434 research outputs found

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    Ecological Modelling with the Calculus of Wrapped Compartments

    Get PDF
    The Calculus of Wrapped Compartments is a framework based on stochastic multiset rewriting in a compartmentalised setting originally developed for the modelling and analysis of biological interactions. In this paper, we propose to use this calculus for the description of ecological systems and we provide the modelling guidelines to encode within the calculus some of the main interactions leading ecosystems evolution. As a case study, we model the distribution of height of Croton wagneri, a shrub constituting the endemic predominant species of the dry ecosystem in southern Ecuador. In particular, we consider the plant at different altitude gradients (i.e. at different temperature conditions), to study how it adapts under the effects of global climate change.Comment: A preliminary version of this paper has been presented in CMC13 (LNCS 7762, pp 358-377, 2013

    Stochastic Calculus of Wrapped Compartments

    Get PDF
    The Calculus of Wrapped Compartments (CWC) is a variant of the Calculus of Looping Sequences (CLS). While keeping the same expressiveness, CWC strongly simplifies the development of automatic tools for the analysis of biological systems. The main simplification consists in the removal of the sequencing operator, thus lightening the formal treatment of the patterns to be matched in a term (whose complexity in CLS is strongly affected by the variables matching in the sequences). We define a stochastic semantics for this new calculus. As an application we model the interaction between macrophages and apoptotic neutrophils and a mechanism of gene regulation in E.Coli

    A Process Calculus for Spatially-explicit Ecological Models

    Full text link
    We propose PALPS, a Process Algebra with Locations for Population Systems. PALPS allows us to produce spatially-explicit, individual-based models and to reason about their behavior. Our calculus has two levels: at the first level we may define the behavior of an individual of a population while, at the second level, we may specify a system as the collection of individuals of various species located in space, moving through their life cycle while changing their location, if they so wish, and interacting with each other in various ways such as preying on each other. Furthermore, we propose a probabilistic temporal logic for reasoning about the behavior of PALPS processes. We illustrate our framework via models of dispersal in metapopulations.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    Get PDF
    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed

    Parallel BioScape: A Stochastic and Parallel Language for Mobile and Spatial Interactions

    Full text link
    BioScape is a concurrent language motivated by the biological landscapes found at the interface of biology and biomaterials. It has been motivated by the need to model antibacterial surfaces, biofilm formation, and the effect of DNAse in treating and preventing biofilm infections. As its predecessor, SPiM, BioScape has a sequential semantics based on Gillespie's algorithm, and its implementation does not scale beyond 1000 agents. However, in order to model larger and more realistic systems, a semantics that may take advantage of the new multi-core and GPU architectures is needed. This motivates the introduction of parallel semantics, which is the contribution of this paper: Parallel BioScape, an extension with fully parallel semantics.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Some Notes on (Mem)Brane Computation

    Get PDF
    Membrane Computing and Brane Calculi are two recent computational paradigms in the framework of Natural Computing. They are based on the study of the structure and functioning of living cells as living organisms able to process and generate information. In this paper we give a short introduction to both areas and point out some open research lines.Ministerio de Educación y Ciencia TIN2005-09345-C04-01Junta de Andalucía TIC-58

    Formal executable descriptions of biological systems

    Get PDF
    The similarities between systems of living entities and systems of concurrent processes may support biological experiments in silico. Process calculi offer a formal framework to describe biological systems, as well as to analyse their behaviour, both from a qualitative and a quantitative point of view. A couple of little examples help us in showing how this can be done. We mainly focus our attention on the qualitative and quantitative aspects of the considered biological systems, and briefly illustrate which kinds of analysis are possible. We use a known stochastic calculus for the first example. We then present some statistics collected by repeatedly running the specification, that turn out to agree with those obtained by experiments in vivo. Our second example motivates a richer calculus. Its stochastic extension requires a non trivial machinery to faithfully reflect the real dynamic behaviour of biological systems
    corecore