17,782 research outputs found

    Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Get PDF
    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010

    Urban ground-based thermography

    Get PDF
    Urban climates are driven by micro-meteorological processes associated with the complex urban form, materials, and land cover patterns. Given its close link to the surface energy balance, surface temperature observations are key to the improvement and evaluation of models. This work contributes to the application of ground-based thermography in urban settings as an observational method to further our understanding of urban climate processes. In this thesis, ground-based thermography observations are collected and interpreted in a unique way so that they are relatable to scales used by urban climate models and earth observation (EO) satellites. At two measurement sites (simplified outdoor scale model and complex central urban setting), variations in surface temperature are quantitatively linked to micro-scale features such as shadow patterns and material characteristics at unprecedented levels of detail. Previous studies with low level of detail have inferred these properties. The detected upwelling longwave radiation is corrected to surface temperature (Ts) using a novel, high-resolution three-dimensional (3D) radiative transfer (RT) approach. From multi-day observational evaluation, the atmospheric correction has 0.39 K mean absolute error. Ground-based observations are combined with a comprehensive 3D radiative transfer model, enabling detailed simulation of EO land surface temperature (TsEO). For a mainly clear-sky summer day, TsEO at night underestimates the unbiased “complete” surface temperature (Tc) by 0.5 – 1 K, is similar to Tc during morning and evening, and for other times varies significantly with view angle (up to 5.1 K). Generally, view angle variation is smaller than prior studies as they typically use simpler geometry and temperature descriptions, and lack vegetation. Here, the observational basis and high-resolution modelling in a real central urban setting serves as a benchmark for future improvements of simplified model parameterisations

    A sensor view model to investigate the influence of tree crowns on effective urban thermal anisotropy

    Get PDF
    A sensor view model is modified to include trees using a gap probability approach to estimate foliage view factors and an energy budget model for leaf surface temperatures (SUMVEG). The model is found to compare well with airborne thermal infrared (TIR) surface temperature measurements. SUMVEG is used to investigate the influence of trees on thermal anisotropy for narrow field-of-view TIR remote sensors over treed residential urban surfaces. Tests on regularly-spaced arrays of cubes on March 28 and June 21 at latitudes of 47.6°N and 25.8°N show that trees both decrease and increase anisotropy as a function of tree crown and building plan fractions. In compact geometries, anisotropy tends to decrease with tree crown plan fraction, with the opposite in open geometries, though trees taller than building height cause anisotropy to increase for all building plan fractions. These results help better understand and potentially correct urban thermal anisotropy

    DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces

    Get PDF
    Modeling the radiative behavior and the energy budget of land surfaces is relevant for many scientific domains such as the study of vegetation functioning with remotely acquired information. DART model (Discrete Anisotropic Radiative Transfer) is developed since 1992. It is one of the most complete 3D models in this domain. It simulates radiative transfer (R.T.) in the optical domain: 3D radiative budget and remote sensing images (i.e., radiance, reflectance, brightness temperature) of vegetation and urban Earth surfaces, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (flux tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. Here, its potential is illustrated with the case of urban and tropical forest canopies. Moreover, three recent improvements in terms of functionality and operability are presented: account of Earth/Atmosphere curvature for oblique remote sensing measurements, importation of 3D objects simulated as the juxtaposition of triangles with the possibility to transform them into 3D turbid objects, and R.T. simulation in landscapes that have a continuous topography and landscapes that are non repetitive. Finally, preliminary results concerning two application domains are presented. 1) 2D distribution of the reflectance, brightness temperature and radiance measured by a geostationary satellite over a whole continent. 2) 3D radiative budget of natural and urban surfaces with a DART energy budget (EB) component that is being developed. This new model, called DARTEB, is intended to simulate the energy budget of land surfaces

    Harmonization of remote sensing land surface products : correction of clear-sky bias and characterization of directional effects

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Deteção Remota), Universidade de Lisboa, Faculdade de Ciências, 2018Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean energy balance at the surface. LST is an important climatological variable and a diagnostic parameter of land surface conditions, since it is the primary variable determining the upward thermal radiation and one of the main controllers of sensible and latent heat fluxes between the surface and the atmosphere. The reliable and long-term estimation of LST is therefore highly relevant for a wide range of applications, including, amongst others: (i) land surface model validation and monitoring; (ii) data assimilation; (iii) hydrological applications; and (iv) climate monitoring. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, i.e., within the 8-13 micrometer range. Beside the relatively weak atmospheric attenuation under clear sky conditions, this band includes the peak of the Earth’s spectral radiance, considering surface temperature of the order of 300K (leading to maximum emission at approximately 9.6 micrometer, according to Wien’s Displacement Law). The estimation of LST from remote sensing instruments operating in the IR is being routinely performed for nearly 3 decades. Nevertheless, there is still a long list of open issues, some of them to be addressed in this PhD thesis. First, the viewing position of the different remote sensing platforms may lead to variability of the retrieved surface temperature that depends on the surface heterogeneity of the pixel – dominant land cover, orography. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should correspond to the ensemble directional radiometric temperature of all surface elements within the FOV. In this thesis, a geometric model is presented that allows the upscaling of in situ measurements to the any viewing configuration. This model allowed generating a synthetic database of directional LST that was used consistently to evaluate different parametric models of directional LST. Ultimately, a methodology is proposed that allows the operational use of such parametric models to correct angular effects on the retrieved LST. Second, the use of infrared data limits the retrieval of LST to clear sky conditions, since clouds “close” the atmospheric window. This effect introduces a clear-sky bias in IR LST datasets that is difficult to quantify since it varies in space and time. In addition, the cloud clearing requirement severely limits the space-time sampling of IR measurements. Passive microwave (MW) measurements are much less affected by clouds than IR observations. LST estimates can in principle be derived from MW measurements, regardless of the cloud conditions. However, retrieving LST from MW and matching those estimations with IR-derived values is challenging and there have been only a few attempts so far. In this thesis, a methodology is presented to retrieve LST from passive MW observations. The MW LST dataset is examined comprehensively against in situ measurements and multiple IR LST products. Finally, the MW LST data is used to assess the spatial-temporal patterns of the clear-sky bias at global scale.Fundação para a Ciência e a Tecnologia, SFRH/BD/9646

    Polar ozone

    Get PDF
    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed

    Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    Get PDF
    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D\&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios
    • …
    corecore