7,232 research outputs found

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    Data broadcast scheduling: Models, algorithms, and analysis

    Get PDF
    Inherent in the field of data broadcasting is a communication problem in which a server is to transmit a subset of data items in response to requests received from clients. The intent of the server is to optimize metrics quantifying the quality of service the system provides. This method of data dissemination has proved to be an efficient means of delivering information in asymmetric environments demanding massive scalability. of critical importance in such a system is the algorithm used by the server to construct a schedule of item broadcasts.;Due to the real-time nature of this problem, performances of heuristics designed to construct such schedules are heavily dependent on request instances. Thus it is challenging to establish the quality of one algorithm over another. Though several scheduling methods have been developed, these algorithms have been studied with a reliance on probabilistic assumptions and little emphasis on analytical results.;In contrast, we provide a formal treatment of the data broadcast scheduling problem in which analytical methods are applied, complemented by simulation experiments. Utilizing a worst-case technique known as competitive analysis, we establish bounds on the performance of various algorithms in the context of several different broadcast models. We describe results in three different settings.;Minimizing the total wait time of all requests with a single channel and multiple database items we establish the competitive ratios for two well-known algorithms, First Come First Served (FCFS) and Most Requests First (MRF) to be equal, and provide a general lower bound for all algorithms in this context. We describe simulation results that indicate the superior performance of MRF over FCFS on average. Minimizing two conflicting metrics, the total wait time and total broadcast cost, with a single channel and single database item we develop two on-line algorithms, establish their competitive ratios, and provide an optimal off-line algorithm used to simulate the impact of various parameters on the performance of both on-line heuristics. Finally, we extend the previous model by including multiple database items and establish a lower bound to a greedy algorithm for this context

    Performance Evaluation of Scalable Multi-cell On-Demand Broadcast Protocols

    Get PDF
    As mobile data service becomes popular in today's mobile network, the data traffic burden irrevocably increases. LTE 4G, as the next-generation mobile technology, provides high data rates and improved spectral efficiency for data transmission. Currently in the mobile network, mobile data service solely relies on the point-to-point unicast transmission. In the ever-evolving 4G mobile network, mobile broadcast may serve as a supplemental means of pushing mobile data content from the data server to the mobile user devices. As part of the LTE 4G specifications, the mobile broadcast technology referred to as eMBMS is designed for supporting the mobile data service. From eMBMS, SFN broadcast transmission scheme allows data broadcasting to be synchronized in all cells of a defined core network area. LTE 4G also enables single-cell broadcast scheme in which data broadcasting is taking place independently in every cell. In this thesis, besides SFN or single-cell broadcast transmission, a hybrid broadcast transmission scheme in which SFN and single-cell broadcast transmission are used interchangeably in the same network based on the network conditions is proposed. For on-demand data service, the pull-based scheduling protocols from previous work are originally designed to work in a single-cell case scenario. With slight modifications, the batching/cbd protocol can be adapted for multi-cell data service. A new combined scheduling protocol, that is cyclic/cd,fft protocol, is devised as the second candidate for multi-cell data transmission scheduling. Based on the three broadcast transmission schemes and the two broadcast scheduling protocols, six mobile broadcast protocols are proposed. The mobile broadcast models, which correspond to the six mobile broadcast protocols, are evaluated by analysis and simulation experiment. By analysis, the cost equations are derived for calculating average server bandwidth, average client delay and maximum client delay of the mobile broadcast models. In the experiment, the input parameters of broadcast test models are assessed one at a time. The experimental results show that the hybrid broadcast transmission together with cyclic/cd,fft protocol would provide the best server bandwidth performance and the SFN broadcast transmission together with batching/cbd protocol provides the best average delay performance

    Will It Rain Profit With Broadcast Clouds?

    Get PDF

    Development and Performance Evaluation of Urban Mobility Applications and Services

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Data Organization For Data Broadcasting In Mobile Computing

    Get PDF
    Peningkatan penggunaan di dalam teknologi tanpa wayar, membenarkan data atau maklumat dicapai oleh pengguna pada bila-bila masa dan di mana sahaja. The advances in mobile devices and wireless communication techniques have enabled anywhere, anytime data access

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware
    corecore