1,540 research outputs found

    Relevance of accurate Monte Carlo modeling in nuclear medical imaging

    Get PDF
    Monte Carlo techniques have become popular in different areas of medical physics with advantage of powerful computing systems. In particular, they have been extensively applied to simulate processes involving random behavior and to quantify physical parameters that are difficult or even impossible to calculate by experimental measurements. Recent nuclear medical imaging innovations such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and multiple emission tomography (MET) are ideal for Monte Carlo modeling techniques because of the stochastic nature of radiation emission, transport and detection processes. Factors which have contributed to the wider use include improved models of radiation transport processes, the practicality of application with the development of acceleration schemes and the improved speed of computers. This paper presents derivation and methodological basis for this approach and critically reviews their areas of application in nuclear imaging. An overview of existing simulation programs is provided and illustrated with examples of some useful features of such sophisticated tools in connection with common computing facilities and more powerful multiple-processor parallel processing systems. Current and future trends in the field are also discussed

    A Four-Dimensional Image Reconstruction Framework for PET under Arbitrary Geometries

    Get PDF
    Positron Emission Tomography (PET) is a functional imaging modality with applications ranging from the treatment of cancer, studying neurological diseases and disease models. Virtual-Pinhole PET technology improves the image quality in terms of resolution and contrast recovery. The technology calls for having a detector with smaller crystals placed near a region of interest in a conventional whole-body PET scanner. The improvement is from the higher spatial sampling of the imaging area near the detector. A prototype half-ring PET insert built to study head-and-neck cancer imaging was extended to breast cancer imaging. We have built a prototype half-ring PET insert for head-and-neck cancer imaging applications. In the first half of this work, we extend the use of the insert to breast imaging and show that such a system provides high resolution images of breast and axillary lymph nodes while maintaining the full imaging field of view capability of a clinical PET scanner. We are focused on designing unconventional PET geometries for specific applications. A general purpose 4D PET reconstruction framework was created to estimate the radionuclide uptake in the subject. Quantitative estimation in PET requires precise modeling of PET physics. Data acquired in a PET scanner is well modeled as a Poisson counting process. Reconstruction given the forward model is implemented using MAP-OSEM. The framework is capable of reconstructing PET data under arbitrary position of the detector elements and different crystal sizes. A novel symmetry finding algorithm is created to reduce the system matrix size, without loss of resolution. The framework motivates investigation into different PET system geometries for different applications, as well as optimizing the design of PET systems. A generalized normalization procedure was developed to model unknown components. The programs are parallelized using OpenMP and MPI to run on small workstations as well as super-computing clusters. The performance of our reconstruction framework is presented through four novel and unconventional PET systems, each designed specifically for a different geometry. The Virtual-Pinhole half-ring system is a half-ring insert integrated into a Siemens Biograph-40, for head and neck imaging. The Flat-panel system is a modular insert system integrated into the Biograph-40, designed for breast cancer imaging. The MicroInsert II is the second generation full ring insert device, integrated into the MicroPET scanner to improve the resolution and contrast recovery of the MicroPET scanner. The Plant PET system is a PET system designed to image plants vertically, and integrated into a plant growth chamber. The improvement in speed/memory from symmetry finding is as high as a factor of 50 in some cases. Further improvements to the framework and state of the field are also discussed

    Small animal PET imaging using GATE Monte Carlo simulations : Implementation of physiological and metabolic information

    Get PDF
    Tese de doutoramento, (Engenharia Biomédica e Biofísica), Universidade de Lisboa, Faculdade de Ciências, 2010O rato/ratinho de laboratório é o modelo animal de escolha para o estudo dos processos fundamentais associados a determinadas patologias, como o cancro. Esta escolha deve-se a uma gama de factores que incluem uma grande homologia genética com o Homem. Assim sendo o rato/ratinho é amplamente utilizado em laboratórios por todo o Mundo para estudo dos processos celulares básicos associados á doença e à terapia. A comunidade laboratorial tem, nos últimos anos, desenvolvido um grande interesse pela imagiologia não-invasiva destes animais. De entre as diversas tecnologias de imagem aplicadas aos estudosin vivo de pequenos animais, a Tomografia por Emissão de Positrões (PET) permite obter informação sobre a distribuição espacial e temporal de moléculas marcadas com átomo emissor de positrões, de forma não invasiva. Os traçadores utilizados para obter esta “imagem molecular” são administrados em baixas quantidades, de tal forma que os processos biológicos que envolvem concentrações da ordem do nano molar, ou mesmo inferiores, podem ser determinadas sem perturbar o processo em estudo. Muitas combinações de diferentes moléculas com diferentes radionúclidos permitem traçar uma gama de caminhos moleculares específicos (e.g. processos biológicos de receptores e síntese de transmissores em caminhos de comunicação em células, processos metabólicos e expressão genética). A imagem pode ser executada repetidamente antes e depois de intervenções permitindo o uso de cada animal como o seu próprio controlo biológico. A investigação já realizada em curso que aplicam a PET ao estudos de pequenos animais, tem permitido compreender, entre outras coisas, a evolução de determinadas doenças e suas potenciais terapias. Contudo, existem algumas dificuldades de implementação desta técnica já que a informação obtida está condicionada pelos fenómenos físicos associados à interacção da radiação com a matéria, pelos instrumentos envolvidos na obtenção da informação e pela própria fisiologia do animal (por exemplo o seu movimento fisiológico). De facto, a fiabilidade da quantificação das imagens obtidas experimentalmente, em sistemas PET dedicados aos pequenos animais, é afectada ao mesmo tempo pelos limites de desempenho dos detectores (resolução espacial e em energia, sensibilidade, etc.), os efeitos físicos como a atenuação e a dispersão, que perturbam a reconstrução da imagem, e os efeitos fisiológicos (movimentos do animal). Na prática estes efeitos são corrigidos com métodos de correcção específicos com a finalidade de extrair parâmetros quantitativos fiáveis. Por outro lado, as características fisiológicas dos animais a estudar e a necessidade da existência de animais disponíveis, são factores adicionais de complexidade. Recentemente, tem sido dedicada alguma atenção aos efeitos resultantes dos movimentos fisiológicos, nomeadamente do movimento respiratório, na qualidade das imagens obtidas no decurso de um exame PET. Em particular, no caso do estudo dos tumores do pulmão (algo infelizmente muito frequente em humanos), o movimento fisiológico dos pulmões é uma fonte de degradação das imagens PET, podendo comprometer a sua resolução e o contraste entre regiões sãs e doentes deste orgão. A precisão quantitativa na determinação da concentração de actividade e dos volumes funcionais fica assim debilitada, sendo por vezes impedida a localização, detecção e quantificação do radiotraçador captado nas lesões pulmonares. De modo a conseguir diminuir estes efeitos, existe a necessidade de melhor compreender a influência deste movimento nos resultados PET. Neste contexto, as simulações Monte Carlo são um instrumento útil e eficaz de ajuda à optimização dos componentes dos detectores existentes, à concepção de novos detectores, ao desenvolviBaseados em modelos matemáticos dos processos físicos, químicos e, sempre que possível, biológicos, os métodos de simulação Monte Carlo são, desde há muito, uma ferramenta privilegiada para a obtenção de informação fiável da previsão do comportamento de sistemas complexos e por maioria de razão, para uma sua melhor compreensão. No contexto da Imagiologia Molecular, a plataforma de simulação Geant4 Application for Tomographic Emission (GATE), validada para as técnicas de imagem de Medicina Nuclear, permite a simulação por Monte Carlo dos processos de obtenção de imagem. Esta simulação pode mesmo ser feita quando se pretende estudar a distribuição de emissores de positrões cuja localização varia ao longo do tempo. Adicionalmente, estas plataformas permitem a utilização de modelos computacionais para modelar a anatomia e a fisiologia dos organismos em estudo mediante a utilização de uma sua representação digital realista denominada de fantôma. A grande vantagem na utilização destes fantômas relaciona-se com o facto de conhecermos as suas características geométricas (“anatómicas”) e de podermos controlar as suas características funcionais (“fisiológicas”). Podemos assim obter padrões a partir dos quais podemos avaliar e aumentar a qualidade dos equipamentos e técnicas de imagem. O objectivo do presente trabalho consiste na modelação e validação de uma plataforma de simulação do sistema microPET® FOCUS 220, usado em estudos de PET para pequenos animais, utilizando a plataforma de simulação GATE. A metodologia adoptada procurou reproduzir de uma forma realista, o ambiente de radiação e factores instrumentais relacionados com o sistema de imagem, assim como o formato digital dos dados produzidos pelo equipamento. Foram usados modelos computacionais, obtidos por segmentação de imagem de exames reais, para a avaliação da quantificação das imagens obtidas. Os resultados obtidos indicam que a plataforma produz resultados reprodutíveis, adequados para a sua utilização de estudos de pequenos animais em PET. Este objectivo foi concretizado estudando os efeitos combinados do tamanho das lesões, do rácio de concentração de actividade lesão-para-fundo e do movimento respiratório na recuperação de sinal de lesões esféricas localizadas no pulmão em imagens PET de pequenos animais. Para este efeito, foi implementada no código GATE uma representação digital em 4D de um ratinho de corpo inteiro (o fantôma MOBY). O MOBY permitiu reproduzir uma condição fisiológica que representa a respiração em condição de "stress", durante um exame típico de PET pequeno animal, e a inclusão de uma lesão esférica no pulmão tendo em conta o movimento da mesma. Foram realizadas um conjunto de simulações estáticas e dinâmicas usando 2-Deoxy-[18F]fluoro-D-glucose (FDG) tendo em consideração diferentes tamanhos das lesões e diferentes captações deste radiofármaco. O ruído da imagem e a resolução temporal foram determinadas usando imagens 3D e 4D. O rácio sínal-para-ruído (SNR), o rácio contraste-para-ruído (CNR), a relação lesão-fundo (target-to-background activity concentration ratio- TBR), a recuperação de contraste (CR) e a recuperação de volume (VR) foram também avaliados em função do tamanho da lesão e da actividade captada. Globalmente, os resultados obtidos demonstram que a perda de sinal depende tanto do tamanho da lesão como da captação de actividade na lesão. Nas simulações estáticas, onde não foi simulado movimento, os coeficientes de recuperação foram influenciados pelo efeito de volume parcial para os tamanhos mais reduzidos de lesão. Além disso, o aumento do contraste na lesão produz um aumento significativo no desvio padrão da média de sinal recuperado resultando numa diminuição no CNR e no SNR. Também concluímos que o movimento respiratório diminui significativamente a recuperação do sinal e que esta perda depende principalmente do tamanho da lesão. A melhor resolução temporal e resolução espacial foram obtidas nas simulações estáticas, onde não existia movimento envolvido. Os resultados simulados mostram que o efeito de volume parcial é dominante nas lesões mais pequenas devido à resolução espacial do sistema FOCUS, tanto nas imagens estáticas como nas dinâmicas. Além disso, para concentrações baixas de radiofármaco existe uma dificuldade inerente em quantificar a recuperação de sinal nas lesões comprometendo a análise quantitativa dos dados obtidos.Organ motion has become of great concern in medical imaging only recently. Respiratory motion is one source of degradation of PET images. Respiratory motion may lead to image blurring, which may result in reduced contrast and quantitative accuracy in terms of recovered activity concentration and functional volumes. Consequently, the motion of lungs hinders the localization, detection, and the quantification of tracer uptake in lung lesions. There is, therefore, a need to better understand the effects of this motion on PET data outcome. Medical imaging methods and devices are commonly evaluated through computer simulation. Computer generated phantoms are used to model patient anatomy and physiology, as well as the imaging process itself. A major advantage of using computer generated phantoms in simulation studies is that the anatomy and physiological functions of the phantom are known, thus providing a gold standard from which to evaluate and improve medical imaging devices and techniques. In this thesis, are presented the results of a research studied the combined effects of lesion size, lesion-to-background activity concentration ratio and respiratory motion on signal recovery of spherical lesions in small animal PET images using Monte Carlo simulation. Moreover, background activity is unavoidable and it causes significant noise and contrast loss in PET images. For these purposes, has been used the Geant4 Application for Tomographic Emission (GATE) Monte Carlo platform to model the microPET®FOCUS 220 system. Additionaly, was implemented the digital 4D Mouse Whole-Body (MOBY) phantom into GATE. A physiological “stress breathing” condition was created for MOBY in order to reproduce the respiratory mouse motion during a typical PET examination. A spherical lung lesion was implemented within this phantom and its motion also modelled. Over a complete respiratory cycle of 0.37 s was retrieved a set of 10 temporal frames (including the lesion movement) generated in addition to a non-gated data set. Sets of static (non-gated data) and dynamic (gated data) 2-Deoxy-[18F]fluoro-D-glucose (FDG) simulations were performed considering different lesion sizes and different activity uptakes. Image noise and temporal resolution were determined on 3D and 4D images. Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR), Target-to-Background activity concentration Ratio (TBR), Contrast Recovery (CR) and Volume Recovery (VR) were also evaluated as a function of lesion size and activity uptake. Globally, the results obtained show that signal loss depends both on lesion size and lesion activity uptake. In the non-gated data, where was no motion included (perfect motion correction), the recovery coefficients were influenced by the partial volume effect for the smallest lesion size. Moreover, the increased lesion contrast produces a significant increase on the standard deviation of the mean signal recover. This led to a decrease in CNR and SNR. In addition, respiratory motion significantly deteriorates signal recovery and this loss depends mainly of the lesion size. Best temporal resolution (volume recovery) and spatial resolution was given by the non-gated data, where no motion is involved. The simulated results show that the partial volume effect is dominant for small objects due to limited FOCUS system resolution in both 3D and 4D PET images. In addition, lower activity concentrations significantly deteriorates the lesion signal recovery compromising quantitative analysis.Fundação para a Ciência e a Tecnologia (FCT) under grant nº SFRH/BD/22723/200

    Simulación de rango del positrón y emisiones gamma adicionales en PET

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Atómica, Molecular y Nuclear, leída el 03-04-2014Depto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasTRUEunpu

    Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    Get PDF
    AbstractEmission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios

    Scatter modelling and compensation in emission tomography

    Get PDF
    In nuclear medicine, clinical assessment and diagnosis are generally based on qualitative assessment of the distribution pattern of radiotracers used. In addition, emission tomography (SPECT and PET) imaging methods offer the possibility of quantitative assessment of tracer concentration in vivo to quantify relevant parameters in clinical and research settings, provided accurate correction for the physical degrading factors (e.g. attenuation, scatter, partial volume effects) hampering their quantitative accuracy are applied. This review addresses the problem of Compton scattering as the dominant photon interaction phenomenon in emission tomography and discusses its impact on both the quality of reconstructed clinical images and the accuracy of quantitative analysis. After a general introduction, there is a section in which scatter modelling in uniform and non-uniform media is described in detail. This is followed by an overview of scatter compensation techniques and evaluation strategies used for the assessment of these correction methods. In the process, emphasis is placed on the clinical impact of image degradation due to Compton scattering. This, in turn, stresses the need for implementation of more accurate algorithms in software supplied by scanner manufacturers, although the choice of a general-purpose algorithm or algorithms may be difficul

    Time of flight simulation and reconstruction in Hybrid MR-PET Systems

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2018In traditional PET, coincidence electronics are used to determine the line of response along which an an- nihilation has occurred. With time-of-flight(TOF), the approximate position of the annihilation along the line of annihilation is calculated by measuring the difference between the arrival time of the photons in the detectors. In the literature, TOF images show (in general) a lower level of noise and better resolution compared to non-TOF images. The lower noise and amplified sensitivity of TOF reconstruction could favour a better use of the full resolution potential of PET scanners. The first part of this thesis focuses on the possibility of using faster simulating methods, more specifi- cally, the possibility of replacing the time consuming GATE simulations by a script (from Paola Solevi from Otto-von-Guericke-Universität Magdeburg) was studied. The results show that the values obtained in the simulations with the Hoffman Brain Phantom are very similar between the two methods, showing the viability of this script with this phantom. Then, the same procedure was performed using a Voxelized Brain Phantom. This time the results were different from the ones obtained before because the values obtained with the two methods are very different. Therefore, it is important to know if there is some kind of problem with the phantom used that origins those results or if the problem comes from the script. The second part of this thesis focuses on the development of reconstruction procedures for simulations done with the GE Signa PET-MR scanner. The methods includes the simulation of three phantoms (of- fcenter cylinder and Hoffman Brain Phantom to reconstruct and a large cylinder for the normalisation), a coordinates algorithm developed in MATLAB that can calculate the correct coordinates, for the sino- grams, from the GATE coordinate output and a method that, from an uncorrected sinogram, obtains an arc corrected sinogram that can be used in reconstructions. The results show that the reconstructions were successful, without any artifacts. The reconstructions done without each one of the corrections, show artifacts in both phantoms. These results show the importance of doing corrections before recon- structing the data

    Simulation of Clinical PET Studies for the Assessment of Quantification Methods

    Get PDF
    On this PhD thesis we developed a methodology for evaluating the robustness of SUV measurements based on MC simulations and the generation of novel databases of simulated studies based on digital anthropomorphic phantoms. This methodology has been applied to different problems related to quantification that were not previously addressed. Two methods for estimating the extravasated dose were proposed andvalidated in different scenarios using MC simulations. We studied the impact of noise and low counting in the accuracy and repeatability of three commonly used SUV metrics (SUVmax, SUVmean and SUV50). The same model was used to study the effect of physiological muscular uptake variations on the quantification of FDG-PET studies. Finally, our MC models were applied to simulate 18F-fluorocholine (FCH) studies. The aim was to study the effect of spill-in counts from neighbouring regions on the quantification of small regions close to high activity extended sources

    A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems

    Full text link
    © 2015 Institute of Physics and Engineering in Medicine. A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix - an essential part of statistical iterative reconstruction algorithms - becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of and are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring method to a three dimensional virtual cylinder is demonstrated using a 3D DoI PET scanner

    Monte Carlo simulations for system modeling in emission tomography

    Get PDF
    Non-invasive diagnostic imaging can be performed with different technologies:X-ray radiography, computed radiography, direct radiography, mammography,Computed Tomography (CT), UltraSound (US), and Magnetic Resonance Imaging (MRI), which all give anatomical information, and also with functional MRI (fMRI), optical imaging, thermography, planar isotope imaging,Single Photon Emission Tomography (SPECT), Positron Emission Tomography (PET), and gamma camera PET which return functional information.Recent devices combine two modalities on the same gantry in order to achieve hardware fusion of anatomical and functional images. Given the demographic aging in Western Europe, there exists a large interest in what is popularly referred to as a GPS-tool for cancer, i.e. a diagnostic tool for oncology that detects small malignant lesions in a very early stadium and that can be used for disease staging. Therefore research in nuclear medicine has a social support and bearing. In nuclear medicine examinations, a radiopharmaceutical is injected in the patient, marked with a radionuclide emitting one single photon with an energy of 100-200 keV in SPECT and a positron emitting radionuclide in PET. The emission of a positron finally results in two annihilation photons of 511 keV. Those photons are detected, mostly using a scintillation crystal that generates optical photons which travel through a light guide before reaching the PhotoMultiplierTubes (PMTs). Those PMTs convert the optical photons to electrons, which are in their turn used to generate a position and energy encoding signal. In PET there is an electronic collimation to acquire directional information while this information is obtained by applying a lead collimator in SPECT. The acquired data is afterwards reconstructed to result in a threedimensional radioactive tracer distribution within the patient. Optimization,evaluation and (re)design of all elements in this detection chain is mostly done using simulations. Given the possibility of modeling different physical processes, the Monte Carlo method has also been applied in nuclear medicine to a wide range of problems that could not be addressed by experimental or analytical approaches
    corecore