7 research outputs found

    Bibliography on heavy vehicle dynamics

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/108243/1/103019.pdfDescription of 103019.pdf : Bibliograph

    Compendium in Vehicle Motion Engineering

    Get PDF
    This compendium is written for the course “MMF062 Vehicle Motion Engineering” at Chalmers University of Technology. The compendium covers more than included in that course; both in terms of subsystem designs and in terms of some teasers for more advanced studies of vehicle dynamics. Therefore, it is also useful for the more advanced courses, such as “TME102 Vehicle Modelling and Control”.The overall objective of the compendium is to educate engineers that understand and can contribute to development of good motion and energy functionality of vehicles. The compendium focuses on road vehicles, primarily passenger cars and commercial vehicles. Smaller road vehicles, such as bicycles and single-person cars, are only very briefly addressed. It can be mentioned that there exist a lot of ground-vehicle types not covered at all, such as: off-road/construction vehicles, tracked vehicles, horse wagons, hovercrafts, and railway vehicles.Functions are needed for requirement setting, design and verification. The overall order within the compendium is that models/methods/tools needed to understand each function are placed before the functions. Chapters 3-5 describes (complete vehicle) “functions”, organised after vehicle motion directions:\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 Chapter 3:\ua0Longitudinal\ua0dynamics\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 Chapter 4:\ua0Lateral\ua0dynamics\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 Chapter 5:\ua0Vertical\ua0dynamicsChapter 1 introduces automotive industry and the overall way of working there and defines required pre-knowledge from “product-generic” engineering, e.g. modelling of dynamic systems.Chapter 2 also describes the subsystems relevant for vehicle dynamics:• Wheels and Tyre\ua0• Suspension\ua0• Propulsion\ua0• Braking System\ua0• Steering System\ua0• Environment Sensing SystemThe compendium is released in a new version each year, around October, which is the version your read now. A "latest draft" is more frequently updated and often includes some more, sometimes unfinished, material: https://chalmersuniversity.box.com/s/6igaen1ugcjzuhjziuon08axxiy817f

    Compendium in Vehicle Motion Engineering

    Get PDF
    This compendium is written for the course “MMF062 Vehicle Motion Engineering” at Chalmers University of Technology. The compendium covers more than included in that course; both in terms of subsystem designs and in terms of some teasers for more advanced studies of vehicle dynamics. Therefore, it is also useful for the more advanced course “TME102 Vehicle Modelling and Control”.The overall objective of the compendium is to educate vehicle dynamists, i.e., engineers that understand and can contribute to development of good motion and energy functionality of vehicles. The compendium focuses on road vehicles, primarily passenger cars and commercial vehicles. Smaller road vehicles, such as bicycles and single-person cars, are only very briefly addressed. It should be mentioned that there exist a lot of ground-vehicle types not covered at all, such as: off-road/construction vehicles, tracked vehicles, horse wagons, hovercrafts, or railway vehicles.Functions are needed for requirement setting, design and verification. The overall order within the compendium is that models/methods/tools needed to understand each function are placed before the functions. Chapters 3-5 describes (complete vehicle) “functions”, organised after vehicle motion directions:\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 Chapter 3:\ua0Longitudinal\ua0dynamics\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 Chapter 4:\ua0Lateral\ua0dynamics\ub7\ua0\ua0\ua0\ua0\ua0\ua0\ua0\ua0 Chapter 5:\ua0Vertical\ua0dynamicsChapter 1 introduces automotive industry and the overall way of working there and defines required pre-knowledge from “product-generic” engineering, e.g. modelling of dynamic systems.Chapter 2 also describes the subsystems relevant for vehicle dynamics:• Wheels and Tyre\ua0• Suspension\ua0• Propulsion\ua0• Braking System\ua0• Steering System\ua0• Environment Sensing Syste

    Cumulative index to NASA Tech Briefs, 1970-1975

    Get PDF
    Tech briefs of technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Abstracts and indexes of subject, personal author, originating center, and tech brief number for the 1970-1975 tech briefs are presented

    Optimisation of automatic train protection systems.

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Research and technology, 1990: Goddard Space Flight Center

    Get PDF
    Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies
    corecore