73,325 research outputs found

    Backlog-based random access in wireless networks : fluid limits and delay issues

    Get PDF
    We explore the spatio-temporal congestion dynamics of wireless networks with backlog-based random-access mechanisms. While relatively simple and inherently distributed in nature, suitably designed backlog-based access schemes provide the striking capability to match the optimal throughput performance of centralized scheduling algorithms in a wide range of scenarios. In the present paper, we show that the specific activity functions for which maximum stability has been established, may however yield excessive queue lengths and delays. The results reveal that more aggressive/persistent access schemes can improve the delay performance, while retaining the maximum stability guarantees in a rich set of scenarios. In order to gain qualitative insights and examine stability properties we will investigate fluid limits where the system dynamics are scaled in space and time. As it turns out, several distinct types of fluid limits can arise, exhibiting various degrees of randomness, depending on the structure of the network, in conjunction with the form of the activity functions. We further demonstrate that, counter to intuition, additional interference may improve the delay performance in certain cases. Simulation experiments are conducted to illustrate and validate the analytical findings

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog

    Design and analysis of LTE and wi-fi schemes for communications of massive machine devices

    Get PDF
    Existing communication technologies are designed with speciÿc use cases in mind, however, ex-tending these use cases usually throw up interesting challenges. For example, extending the use of existing cellular networks to emerging applications such as Internet of Things (IoT) devices throws up the challenge of handling massive number of devices. In this thesis, we are motivated to investigate existing schemes used in LTE and Wi-Fi for supporting massive machine devices and improve on observed performance gaps by designing new ones that outperform the former. This thesis investigates the existing random access protocol in LTE and proposes three schemes to combat massive device access challenge. The ÿrst is a root index reuse and allocation scheme which uses link budget calculations in extracting a safe distance for preamble reuse under vari-able cell size and also proposes an index allocation algorithm. Secondly, a dynamic subframe optimization scheme that combats the challenge from an optimisation solution perspective. Thirdly, the use of small cells for random access. Simulation and numerical analysis shows performance improvements against existing schemes in terms of throughput, access delay and probability of collision. In some cases, over 20% increase in performance was observed. The proposed schemes provide quicker and more guaranteed opportunities for machine devices to communicate. Also, in Wi-Fi networks, adaptation of the transmission rates to the dynamic channel condi-tions is a major challenge. Two algorithms were proposed to combat this. The ÿrst makes use of contextual information to determine the network state and respond appropriately whilst the second samples candidate transmission modes and uses the e˛ective throughput to make a deci-sion. The proposed algorithms were compared to several existing rate adaptation algorithms by simulations and under various system and channel conÿgurations. They show signiÿcant per-formance improvements, in terms of throughput, thus, conÿrming their suitability for dynamic channel conditions

    Fast Adaptive S-ALOHA Scheme for Event-driven Machine-to-Machine Communications

    Full text link
    Machine-to-Machine (M2M) communication is now playing a market-changing role in a wide range of business world. However, in event-driven M2M communications, a large number of devices activate within a short period of time, which in turn causes high radio congestions and severe access delay. To address this issue, we propose a Fast Adaptive S-ALOHA (FASA) scheme for M2M communication systems with bursty traffic. The statistics of consecutive idle and collision slots, rather than the observation in a single slot, are used in FASA to accelerate the tracking process of network status. Furthermore, the fast convergence property of FASA is guaranteed by using drift analysis. Simulation results demonstrate that the proposed FASA scheme achieves near-optimal performance in reducing access delay, which outperforms that of traditional additive schemes such as PB-ALOHA. Moreover, compared to multiplicative schemes, FASA shows its robustness even under heavy traffic load in addition to better delay performance.Comment: 5 pages, 3 figures, accepted to IEEE VTC2012-Fal

    Mobile Networking

    Get PDF
    We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad

    Non-Coherent Active Device Identification for Massive Random Access

    Full text link
    Massive Machine-Type Communications (mMTC) is a key service category in the current generation of wireless networks featuring an extremely high density of energy and resource-limited devices with sparse and sporadic activity patterns. In order to enable random access in such mMTC networks, base station needs to identify the active devices while operating within stringent access delay constraints. In this paper, an energy efficient active device identification protocol is proposed in which active devices transmit On-Off Keying (OOK) modulated preambles jointly and base station employs non-coherent energy detection avoiding channel estimation overheads. The minimum number of channel-uses required by the active user identification protocol is characterized in the asymptotic regime of total number of devices \ell when the number of active devices kk scales as k=Θ(1)k=\Theta(1) along with an achievability scheme relying on the equivalence of activity detection to a group testing problem. Several practical schemes based on Belief Propagation (BP) and Combinatorial Orthogonal Matching Pursuit (COMP) are also proposed. Simulation results show that BP strategies outperform COMP significantly and can operate close to the theoretical achievability bounds. In a partial-recovery setting where few misdetections are allowed, BP continues to perform well

    Improvement to efficient counter-based broadcast scheme through random assessment delay adaptation for MANETs

    Get PDF
    Flooding, the process in which each node retransmits every uniquely received packet exactly once is the simplest and most commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision, a phenomenon collectively referred to as broadcast storm problem. To mitigate this problem, several broadcast schemes have been proposed which are commonly divided into two categories; deterministic schemes and probabilistic schemes. Probabilistic methods are quite promising because they can reduce the number of redundant rebroadcast without any control overhead. In this paper, we investigate the performance of our earlier proposed efficient counter-based broadcast scheme by adapting its random assessment delay (RAD) mechanism to network congestion. Simulation results revealed that this simple adaptation achieves superior performance in terms of saved rebroadcast, end-to-end delay and reachability
    corecore