7,259 research outputs found

    Physics of puffing and microexplosion of emulsion fuel droplets

    Get PDF
    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.This article has been made available through the Brunel Open Access Publishing Fund

    MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

    Get PDF
    MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC

    Numerical simulation of small bubble-big bubble-liquid three-phase flows

    Get PDF
    Numerical simulations of the small bubble-big bubble-liquid three phase heterogeneous flow\ud in a square cross-sectioned bubble column were carried out with the commercial CFD\ud package CFX-4.4 to explore the effect of superficial velocity and inlet dispersed phase\ud fractions on the flow patterns. The approach of Krishna et al. (2000) was adopted in the\ud Euler-Euler framework to numerically simulate the gas-liquid heterogeneous flow in bubble\ud columns. On basis of an earlier study (Zhang et al. 2005), the extended multiphase k - ε\ud turbulence model (Pfleger and Becker, 2001) was chosen to model the turbulent viscosity in\ud the liquid phase and implicitly account for the bubble-induced turbulence. The obtained\ud results suggest that, first of all, the extended multiphase k - ε turbulence model of Pfleger and\ud Becker (2001) is capable of capturing the dynamics of the heterogeneous flow. With\ud increasing superficial velocity, the dynamics of the flow, as well as the total gas hold-up\ud increases. It is observed that with increasing inlet phase fraction of the big bubbles, the total\ud gas holdup decreases while the dynamic nature of the flow increases, which indicates that the\ud small bubble phase mainly determines the total gas holdup while the big bubble phase\ud predominantly agitates the liquid
    • …
    corecore