22,045 research outputs found

    A multiscale collocation method for fractional differential problems

    Get PDF
    We introduce a multiscale collocation method to numerically solve differential problems involving both ordinary and fractional derivatives of high order. The proposed method uses multiresolution analyses (MRA) as approximating spaces and takes advantage of a finite difference formula that allows us to express both ordinary and fractional derivatives of the approximating function in a closed form. Thus, the method is easy to implement, accurate and efficient. The convergence and the stability of the multiscale collocation method are proved and some numerical results are shown.We introduce a multiscale collocation method to numerically solve differential problems involving both ordinary and fractional derivatives of high order. The proposed method uses multiresolution analyses (MRA) as approximating spaces and takes advantage of a finite difference formula that allows us to express both ordinary and fractional derivatives of the approximating function in a closed form. Thus, the method is easy to implement, accurate and efficient. The convergence and the stability of the multiscale collocation method are proved and some numerical results are shown

    Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid

    Full text link
    In recent years, non-Newtonian fluids have received much attention due to their numerous applications, such as plastic manufacture and extrusion of polymer fluids. They are more complex than Newtonian fluids because the relationship between shear stress and shear rate is nonlinear. One particular subclass of non-Newtonian fluids is the generalized Oldroyd-B fluid, which is modelled using terms involving multi-term time fractional diffusion and reaction. In this paper, we consider the application of the finite difference method for this class of novel multi-term time fractional viscoelastic non-Newtonian fluid models. An important contribution of the work is that the new model not only has a multi-term time derivative, of which the fractional order indices range from 0 to 2, but also possesses a special time fractional operator on the spatial derivative that is challenging to approximate. There appears to be no literature reported on the numerical solution of this type of equation. We derive two new different finite difference schemes to approximate the model. Then we establish the stability and convergence analysis of these schemes based on the discrete H1H^1 norm and prove that their accuracy is of O(τ+h2)O(\tau+h^2) and O(τmin{3γs,2αq,2β}+h2)O(\tau^{\min\{3-\gamma_s,2-\alpha_q,2-\beta\}}+h^2), respectively. Finally, we verify our methods using two numerical examples and apply the schemes to simulate an unsteady magnetohydrodynamic (MHD) Couette flow of a generalized Oldroyd-B fluid model. Our methods are effective and can be extended to solve other non-Newtonian fluid models such as the generalized Maxwell fluid model, the generalized second grade fluid model and the generalized Burgers fluid model.Comment: 19 pages, 8 figures, 3 table
    corecore