4,219 research outputs found

    Investigating the Impact of Global Positioning System Evidence

    Full text link
    The continued amalgamation of Global Positioning Systems (GPS) into everyday activities stimulates the idea that these devices will increasingly contribute evidential importance in digital forensics cases. This study investigates the extent to which GPS devices are being used in criminal and civil court cases in the United Kingdom through the inspection of Lexis Nexis, Westlaw, and the British and Irish Legal Information Institute (BAILII) legal databases. The research identified 83 cases which involved GPS evidence from within the United Kingdom and Europe for the time period from 01 June 1993 to 01 June 2013. The initial empirical analysis indicates that GPS evidence in court cases is rising over time and the majority of those court cases are criminal cases.Comment: This article was published at: http://www.hicss.hawaii.edu/hicss_48/apahome48.ht

    Urban Positioning on a Smartphone: Real-time Shadow Matching Using GNSS and 3D City Models

    Get PDF
    The performance of global navigation satellite system (GNSS) user equipment in urban canyons is particularly poor in the cross-street direction. This is because more signals are blocked by buildings in the cross-street direction than along the street [1]. To address this problem, shadow matching has been proposed to improve cross-street positioning from street-level to lane-level (meters-level) accuracy using 3D city models. This is a new positioning method that uses the city model to predict which satellites are visible from different locations and then compares this with the measured satellite visibility to determine position [2]. In previous work, we have demonstrated shadow matching using GPS and GLONASS data recorded using a geodetic GNSS receiver in Central London, achieving a cross-street position accuracy within 5m 89% of the time [3]. This paper describes the first real-time implementation of shadow matching on a smartphone capable of receiving both GPS and GLONASS. The typical processing time for the system to provide a solution was between 1 and 2 seconds. On average, the cross-street position accuracy from shadow matching was a factor of four better than the phone’s conventional GNSS position solution. A number of groups have also used 3D city models to predict and, in some cases, correct non-line-of-sight reception [4-6]. However, to our knowledge, this paper reports the first ever demonstration of any 3D-model-aided GNSS positioning technique in real time, as opposed to using recorded GNSS data. When it comes to real-time positioning on a smartphone, various obstacles exist including lower-grade GNSS receivers, limited availability of computational power, memory, and battery power. To tackle these problems, in this work, an efficient smartphone-based shadow-matching positioning system was designed. The system was then implemented in an app (i.e. application or software) on the Android operating system, the most common operating system for smartphones. The app has been developed in Java using Eclipse, a software development environment (SDE). It was built on Standard Android platform 4.0.3, using the Android Application programming interface (API) to retrieve information from the GNSS chip. The new positioning system does not require any additional hardware or real-time rendering of 3D scenes. Instead, a grid of building boundaries is computed in advance and stored within the phone. This grid could also be downloaded from the network on demand. Shadow matching is therefore both power-efficient and cost-effective. Experimental testing was performed in Central London using a Samsung Galaxy S3 smartphone. This receives both GPS and GLONASS satellites and has an assisted GNSS (AGNSS) capability. A 3D city model of the Aldgate area of central London, supplied by ZMapping Ltd, was used. Four experimental locations with different building topologies were selected on Fenchurch Street, a dense urban area. Using the Android app developed in this work, real-time shadow-matching positioning was performed over 6 minutes at each site with a new position solution computed every 5 seconds using both GPS and GLONASS observations were used for real-time positioning. The measurement data was also recorded at 1-second intervals for later analysis. Various criteria are applied to access the new system and compare it with the conventional GNSS positioning results. The experimental results show that the proposed system outperforms the conventional GNSS positioning solution, reducing the mean absolute deviation of the cross-street positioning error from 14.81 m to 3.33 m, with a 77.5 percentage reduction. The feasibility of deploying the new system on a larger scale is also discussed from three perspectives: the availability of 3D city models and satellite information, data storage and transfer requirements, and demand from applications. This meters-level across-street accuracy in urban areas benefits a variety of applications from Intelligent Transportation Systems (ITS) and land navigation systems for automated lane identification to step-by-step guidance for the visually impaired and for tourists, location-based advertisement (LBA) for targeting suitable consumers and many other location-based services (LBS). The system is also expandable to work with Galileo and Beidou (Compass) in the future, with potentially improved performance. In the future, the shadow-matching system can be implemented on a smartphone, a PND, or other consumer-grade navigation device, as part of an intelligent positioning system [7], along with height-aided conventional GNSS positioning, and potentially other technologies, such as Wi-Fi and inertial sensors to give the best overall positioning performance. / References [1] Wang, L., Groves, P. D. & Ziebart, M. Multi-constellation GNSS Performance Evaluation for Urban Canyons Using Large Virtual Reality City Models. Journal of Navigation, July 2012. [2] Groves, P. D. 2011. Shadow Matching: A New GNSS Positioning Technique for Urban Canyons The Journal of Navigation, 64, pp417-430. [3] Wang, L., Groves, P. D. & Ziebart, M. K. GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 3D City Model with Optimized Visibility Prediction Scoring. ION GNSS 2012. [4] Obst, M., Bauer, S. and Wanielik, G. Urban Multipath Detection and mitigation with Dynamic 3D Maps for Reliable Land Vehicle Localization. IEEE/ION PLANS 2012. [5] Peyraud, S., Bétaille, D., Renault, S., Ortiz, M., Mougel, F., Meizel, D. and Peyret, F. (2013) About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm. Sensors, Vol. 13, 2013, 829?847. [6] Bourdeau, A., M. Sahmoudi, and J.-Y. Tourneret, “Tight Integration of GNSS and a 3D City Model for Robust Positioning in Urban Canyons,” Proc. ION GNSS 2012. [7] Groves, P. D., Jiang, Z., Wang, L. & Ziebart, M. Intelligent Urban Positioning using Multi-Constellation GNSS with 3D Mapping and NLOS Signal Detection. ION GNSS 2012

    State modelling of the land mobilepropagation channel for dual-satellite systems

    Get PDF
    The quality of service of mobile satellite reception can be improved by using multi-satellite diversity (angle diversity). The recently finalised MiLADY project targeted therefore on the evaluation and modelling of the multi-satellite propagation channel for land mobile users with focus on broadcasting applications. The narrowband model combines the parameters from two measurement campaigns: In the U.S. the power levels of the Satellite Digital Audio Radio Services were recorded with a high sample rate to analyse fast and slow fading effects in great detail. In a complementary campaign signals of Global Navigation Satellite Systems (GNSS) were analysed to obtain information about the slow fading correlation for almost any satellite constellation. The new channel model can be used to generate time series for various satellite constellations in different environments. This article focuses on realistic state sequence modelling for angle diversity, confining on two satellites. For this purpose, different state modelling methods providing a joint generation of the states ‘good good’, ‘good bad’, ‘bad good’ and ‘bad bad’ are compared. Measurements and re-simulated data are analysed for various elevation combinations and azimuth separations in terms of the state probabilities, state duration statistics, and correlation coefficients. The finally proposed state model is based on semi-Markov chains assuming a log-normal state duration distribution

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Navigation Recommender:Real-Time iGNSS QoS Prediction for Navigation Services

    Get PDF
    Global Navigation Satellite Systems (GNSSs), especially Global Positioning System (GPS), have become commonplace in mobile devices and are the most preferred geo-positioning sensors for many location-based applications. Besides GPS, other GNSSs under development or deployment are GLONASS, Galileo, and Compass. These four GNSSs are planned to be integrated in the near future. It is anticipated that integrated GNSSs (iGNSSs) will improve the overall satellite-based geo-positioning performance. However, one major shortcoming of any GNSS and iGNSSs is Quality of Service (QoS) degradation due to signal blockage and attenuation by the surrounding environments, particularly in obstructed areas. GNSS QoS uncertainty is the root cause of positioning ambiguity, poor localization performance, application freeze, and incorrect guidance in navigation applications. In this research, a methodology, called iGNSS QoS prediction, that can provide GNSS QoS on desired and prospective routes is developed. Six iGNSS QoS parameters suitable for navigation are defined: visibility, availability, accuracy, continuity, reliability, and flexibility. The iGNSS QoS prediction methodology, which includes a set of algorithms, encompasses four modules: segment sampling, point-based iGNSS QoS prediction, tracking-based iGNSS QoS prediction, and iGNSS QoS segmentation. Given that iGNSS QoS prediction is data- and compute-intensive and navigation applications require real-time solutions, an efficient satellite selection algorithm is developed and distributed computing platforms, mainly grids and clouds, for achieving real-time performance are explored. The proposed methodology is unique in several respects: it specifically addresses the iGNSS positioning requirements of navigation systems/services; it provides a new means for route choices and routing in navigation systems/services; it is suitable for different modes of travel such as driving and walking; it takes high-resolution 3D data into account for GNSS positioning; and it is based on efficient algorithms and can utilize high-performance and scalable computing platforms such as grids and clouds to provide real-time solutions. A number of experiments were conducted to evaluate the developed methodology and the algorithms using real field test data (GPS coordinates). The experimental results show that the methodology can predict iGNSS QoS in various areas, especially in problematic areas

    Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Get PDF
    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program

    Pathway using WUDAPT's Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling

    Get PDF
    The WUDAPT (World Urban Database and Access Portal Tools project goal is to capture consistent information on urban form and function for cities worldwide that can support urban weather, climate, hydrology and air quality modeling. These data are provided as urban canopy parameters (UCPs) as used by weather, climate and air quality models to simulate the effects of urban surfaces on the overlying atmosphere. Information is stored with different levels of detail (LOD). With higher LOD greater spatial precision is provided. At the lowest LOD, Local Climate Zones(LCZ) with nominal UCP ranges is provided (order 100 m or more). To describe the spatial heterogeneity present in cities with great specificity at different urban scales we introduce the Digital Synthetic City (DSC) tool to generate UCPs at any desired scale meeting the fit-for-purpose goal of WUDAPT. 3D building and road elements of entire city landscapes are simulated based on readily available data. Comparisons with real-world urban data are very encouraging. It is customized (C-DSC) to incorporate each city's unique building morphologies based on unique types, variations and spatial distribution of building typologies, architecture features, construction materials and distribution of green and pervious surfaces. The C-DSC uses crowdsourcing methods and sampling within city Testbeds from around the world. UCP data can be computed from synthetic images at selected grid sizes and stored such that the coded string provides UCP values for individual grid cells
    corecore