4,910 research outputs found

    Changes in inorganic aerosol compositions over the Yellow Sea area from impact of Chinese emissions mitigation

    Get PDF
    Substantial mitigation of air pollutants emissions has been performed since 2013 around Beijing, and changes in the atmospheric characteristics have been expected over the downstream area of Beijing. In this study, both WRF-Chem simulation and on-site measurements were utilized for the Baengnyeong (island) supersite, one of the representative regional background sites located in the Yellow Sea, the entrance area of the long-range transport process in Korea. The changes in the chemical compositions of inorganic aerosols were examined for spring-time during the Chinese emission mitigation period from 2014 to 2016. The measured ratio of ionic species to PM2.5 at the Baengnyeong supersite showed changes in aerosol inorganic chemical compositions from sulfate in 2014 to nitrate in 2015–2016. The modeling results also showed that nitrate was low in 2014 and significantly increased in 2015 and 2016, and the acidic aerosol condition had also changed toward a more neutralized status in both the simulation and the observations. The WRF-Chem modeling study further indicated that the sulfur was not neutralized in 2014. However, in 2015 and 2016, SO2 was more sufficiently neutralized as sulfur emissions were substantially reduced in China, while at the same time nitrate had begun to increase in such a ‘SO2–poor’ condition in Beijing area in China, and thus approaching more enhanced neutralization over the Yellow Sea area. The causes of the higher nitrate based on the modeled characteristics of the ammonia-sulfate-nitrate aerosol formation in response to the SO2 emissions reduction in China are also discussed in this paper

    Inverse modeling and mapping US air quality influences of inorganic PM_(2.5) precursor emissions using the adjoint of GEOS-Chem

    Get PDF
    Influences of specific sources of inorganic PM_(2.5) on peak and ambient aerosol concentrations in the US are evaluated using a combination of inverse modeling and sensitivity analysis. First, sulfate and nitrate aerosol measurements from the IMPROVE network are assimilated using the four-dimensional variational (4D-Var) method into the GEOS-Chem chemical transport model in order to constrain emissions estimates in four separate month-long inversions (one per season). Of the precursor emissions, these observations primarily constrain ammonia (NH_3). While the net result is a decrease in estimated US~NH_3 emissions relative to the original inventory, there is considerable variability in adjustments made to NH_3 emissions in different locations, seasons and source sectors, such as focused decreases in the midwest during July, broad decreases throughout the US~in January, increases in eastern coastal areas in April, and an effective redistribution of emissions from natural to anthropogenic sources. Implementing these constrained emissions, the adjoint model is applied to quantify the influences of emissions on representative PM_(2.5) air quality metrics within the US. The resulting sensitivity maps display a wide range of spatial, sectoral and seasonal variability in the susceptibility of the air quality metrics to absolute emissions changes and the effectiveness of incremental emissions controls of specific source sectors. NH_3 emissions near sources of sulfur oxides (SO_x) are estimated to most influence peak inorganic PM_(2.5) levels in the East; thus, the most effective controls of NH_3 emissions are often disjoint from locations of peak NH_3 emissions. Controls of emissions from industrial sectors of SO_x and NO_x are estimated to be more effective than surface emissions, and changes to NH_3 emissions in regions dominated by natural sources are disproportionately more effective than regions dominated by anthropogenic sources. NOx controls are most effective in northern states in October; in January, SO_x controls may be counterproductive. When considering ambient inorganic PM_(2.5) concentrations, intercontinental influences are small, though transboundary influences within North America are significant, with SO_x emissions from surface sources in Mexico contributing almost a fourth of the total influence from this sector

    Air Pollutant Concentrations and Trends over the Eastern U.S. and China: Aircraft Measurements and Numerical Simulations

    Get PDF
    In the last several decades, efforts have been made to mitigate air pollution all around the world. With surface observations showing substantial decrease of criteria pollutants, including O3, NOx, CO and SO2, the long-term aircraft measurements over the eastern U.S. provide a unique opportunity to study the trend of the air pollutant column contents and the regional transport in the free troposphere. Analyses of the historical data indicated ~2.0 Dobson Unit/decade decrease in tropospheric O3 columns over the eastern U.S. with a similar decreasing trend of CO. The statistical analysis also showed a significant decreasing trend for tropospheric SO2. Analyses of the EPA CEMS emission data showed parallel reductions. A case study of tropospheric O3 and SO2 over downwind area of Baltimore showed that the regional transport by westerly wind from Ohio and Pennsylvania play an important role in the local air quality issues. As the second largest economy in the world, China's rapid economic growth in the last decade lead to a dramatic increase in energy demand, which relied heavily on coal burning. The enormous amount of SO2 emissions caused severe environmental issues including acid deposition and particulate matter pollution. To mitigate these air quality problems, strict control measures and regulations were applied to abate sulfur emissions, especially before and during the 2008 Beijing Olympics. Aircraft measurements of tropospheric SO2 were conducted over central China in spring 2008, where intense measurements are lacking. A substantial amount of SO2 was observed in the free troposphere, which is important to regional transport and remote sensing. I successfully validated the SO2 columns with satellite retrievals, and proved that the new OMI SO2 algorithm performs better than the conventional algorithm. An emission inventory was evaluated through a combination of model simulations and satellite products. Between 2006 and 2008, the SO2 emissions had been reduced substantially over middle and eastern China. I also analyzed the model simulations, and find the SO2 lifetime is ~ 38 h during spring in China and that ~50% of Chinese emissions are exported to the western Pacific

    A Satellite-based Assessment of Trans-Pacific Transport of Pollution Aerosol

    Get PDF
    It has been well documented that pollution aerosol and dust from East Asia can transport across the North Pacific basin, reaching North America and beyond. Such intercontinental transport extends the impact of aerosols for climate change, air quality, atmospheric chemistry, and ocean biology from local and regional scales to hemispheric and global scales. Long term, measurement-based studies are necessary to adequately assess the implications of these wider impacts. A satellite-based assessment can augment intensive field campaigns by expanding temporal and spatial scales and also serve as constraints for model simulations. Satellite imagers have been providing a wealth of evidence for the intercontinental transport of aerosols for more than two decades. Quantitative assessments, however, became feasible only recently as a result of the much improved measurement accuracy and enhanced new capabilities of satellite sensors. In this study, we generated a 4-year (2002 to 2005) climatology of optical depth for pollution aerosol (defined as a mixture of aerosols from urbanlindustrial pollution and biomass burning in this study) over the North Pacific from MODerate resolution Imaging Spectro-radiometer (MODIS) observations of fine- and coarse-mode aerosol optical depths. The pollution aerosol mass loading and fluxes were then calculated using measurements of the dependence of aerosol mass extinction efficiency on relative humidity and of aerosol vertical distributions from field campaigns and available satellite observations in the region. We estimated that about 18 Tg/year pollution aerosol is exported from East Asia to the northwestern Pacific Ocean, of which about 25% reaches the west coast of North America. The pollution fluxes are largest in spring and smallest in summer. For the period we have examined the strongest export and import of pollution particulates occurred in 2003, due largely to record intense Eurasia wildfires in spring and summer. The overall uncertainty of pollution fluxes is estimated at about 80%. A reduction of uncertainty can be achieved with a better characterization of pollution aerosol through integrating emerging A-Train measurements. Simulations by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and Global Modeling Initiative (GMI) models agree quite well with the satellite-based estimates of annual and latitudeintegrated fluxes, with larger model-satellite differences in latitudinal variations of fluxes

    A comprehensive modelling way for assessing real-time mixings of mineral and anthropogenic pollutants in East Asia

    Get PDF
    International audienceIn order to assess the complex mixing of atmospheric anthropogenic and natural pollutants over the East Asian region, we propose to take into account the main aerosols simultaneously present over China, Korea and Japan during the spring season. With the mesoscale RAMS (Regional Atmospheric Modeling System) tool, we present a simulation of natural (desert) dust events along with some of the most critical anthropogenic pollutants over East Asia: sulphur elements (SO2 and SO42-) and Black Carbon (BC). During a 2-week case study of dust events which occurred in April 2005 over an area extending from the Gobi deserts to the Japan surroundings, we retrieve the behaviours of the different aerosols plumes. We focus on possible dust mixing with the anthropogenic pollutants from megalopolis. For both natural and anthropogenic pollution, the model results are in general agreement with the horizontal and vertical distributions of concentrations as measured by remote data, in situ LIDAR, PM10 data and literature. In particular, we show that a simplified chemistry approach of this complex issue can be efficient enough to model this event, with a real-time step of 3 h. The model provides the good shapes and orders of magnitude for the Aerosol Optical Thickness (AOT) and species contributions (via the Angström Exponent) when compared with the AERONET data

    Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Get PDF
    International audienceThe representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (3 can reach ?20%, and several important compounds (e.g., H2O2, HCHO) are substantially depleted by clouds and precipitation

    The impact of the 1783-1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei

    Get PDF
    The 1783–1784 AD Laki flood lava eruption commenced on 8 June 1783 and released 122 Tg of sulphur dioxide gas over the course of 8 months into the upper troposphere and lower stratosphere above Iceland. Previous studies have examined the impact of the Laki eruption on sulphate aerosol and climate using general circulation models. Here, we study the impact on aerosol microphysical processes, including the nucleation of new particles and their growth to cloud condensation nuclei (CCN) using a comprehensive Global Model of Aerosol Processes (GLOMAP). Total particle concentrations in the free troposphere increase by a factor ~16 over large parts of the Northern Hemisphere in the 3 months following the onset of the eruption. Particle concentrations in the boundary layer increase by a factor 2 to 5 in regions as far away as North America, the Middle East and Asia due to long-range transport of nucleated particles. CCN concentrations (at 0.22% supersaturation) increase by a factor 65 in the upper troposphere with maximum changes in 3-month zonal mean concentrations of ~1400 cm<sup>−3</sup> at high northern latitudes. 3-month zonal mean CCN concentrations in the boundary layer at the latitude of the eruption increase by up to a factor 26, and averaged over the Northern Hemisphere, the eruption caused a factor 4 increase in CCN concentrations at low-level cloud altitude. The simulations show that the Laki eruption would have completely dominated as a source of CCN in the pre-industrial atmosphere. The model also suggests an impact of the eruption in the Southern Hemisphere, where CCN concentrations are increased by up to a factor 1.4 at 20° S. Our model simulations suggest that the impact of an equivalent wintertime eruption on upper tropospheric CCN concentrations is only about one-third of that of a summertime eruption. The simulations show that the microphysical processes leading to the growth of particles to CCN sizes are fundamentally different after an eruption when compared to the unperturbed atmosphere, underlining the importance of using a fully coupled microphysics model when studying long-lasting, high-latitude eruptions

    Comparison and evaluation of anthropogenic emissions of SO2 and NO2 over China

    Get PDF
    Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely-used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find the clues in improving emission inventories. We first compared the activity rates and emission factors used in two inventories, and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. Discrepancies at sectorial and provincial level are much higher. We then examined the impacts of different inventories on model performance, by using the nested GEOS-Chem model. We finally derived top-down NOx emissions by using the NO2 columns from the Ozone Monitoring Instrument (OMI) and compared with the bottom-up estimates. To our knowledge, this is the first work where source-sector comparisons are made along with the remote sensing retrievals and chemical transport modeling. Through the comparison between bottom-up emission inventories and evaluation with top-down information, we summarized the potential directions for further improvement in inventory development
    corecore