4,061 research outputs found

    Providing Transaction Class-Based QoS in In-Memory Data Grids via Machine Learning

    Get PDF
    Elastic architectures and the ”pay-as-you-go” resource pricing model offered by many cloud infrastructure providers may seem the right choice for companies dealing with data centric applications characterized by high variable workload. In such a context, in-memory transactional data grids have demonstrated to be particularly suited for exploiting advantages provided by elastic computing platforms, mainly thanks to their ability to be dynamically (re-)sized and tuned. Anyway, when specific QoS requirements have to be met, this kind of architectures have revealed to be complex to be managed by humans. Particularly, their management is a very complex task without the stand of mechanisms supporting run-time automatic sizing/tuning of the data platform and the underlying (virtual) hardware resources provided by the cloud. In this paper, we present a neural network-based architecture where the system is constantly and automatically re-configured, particularly in terms of computing resources

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Exploiting replication in distributed systems

    Get PDF
    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs

    Cache Serializability: Reducing Inconsistency in Edge Transactions

    Full text link
    Read-only caches are widely used in cloud infrastructures to reduce access latency and load on backend databases. Operators view coherent caches as impractical at genuinely large scale and many client-facing caches are updated in an asynchronous manner with best-effort pipelines. Existing solutions that support cache consistency are inapplicable to this scenario since they require a round trip to the database on every cache transaction. Existing incoherent cache technologies are oblivious to transactional data access, even if the backend database supports transactions. We propose T-Cache, a novel caching policy for read-only transactions in which inconsistency is tolerable (won't cause safety violations) but undesirable (has a cost). T-Cache improves cache consistency despite asynchronous and unreliable communication between the cache and the database. We define cache-serializability, a variant of serializability that is suitable for incoherent caches, and prove that with unbounded resources T-Cache implements this new specification. With limited resources, T-Cache allows the system manager to choose a trade-off between performance and consistency. Our evaluation shows that T-Cache detects many inconsistencies with only nominal overhead. We use synthetic workloads to demonstrate the efficacy of T-Cache when data accesses are clustered and its adaptive reaction to workload changes. With workloads based on the real-world topologies, T-Cache detects 43-70% of the inconsistencies and increases the rate of consistent transactions by 33-58%.Comment: Ittay Eyal, Ken Birman, Robbert van Renesse, "Cache Serializability: Reducing Inconsistency in Edge Transactions," Distributed Computing Systems (ICDCS), IEEE 35th International Conference on, June~29 2015--July~2 201

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    On component-oriented access control in lightweight virtualized server environments

    Get PDF
    2017 Fall.Includes bibliographical references.With the advancements in contemporary multi-core CPU architectures and increase in main memory capacity, it is now possible for a server operating system (OS), such as Linux, to handle a large number of concurrent services on a single server instance. Individual components of such services may run in different isolated runtime environments, such as chrooted jails or related forms of OS-level containers, and may need restricted access to system resources and the ability to share data and coordinate with each other in a regulated and secure manner. In this dissertation we describe our work on the access control framework for policy formulation, management, and enforcement that allows access to OS resources and also permits controlled data sharing and coordination for service components running in disjoint containerized environments within a single Linux OS server instance. The framework consists of two models and the policy formulation is based on the concept of policy classes for ease of administration and enforcement. The policy classes are managed and enforced through a Lightweight Policy Machine for Linux (LPM) that acts as the centralized reference monitor and provides a uniform interface for regulating access to system resources and requesting data and control objects. We present the details of our framework and also discuss the preliminary implementation and evaluation to demonstrate the feasibility of our approach
    • …
    corecore