19,182 research outputs found

    Large scale simulation of turbulence using a hybrid spectral/finite difference solver

    Get PDF
    Performing Direct Numerical Simulation (DNS) of turbulence on large-scale systems (offering more than 1024 cores) has become a challenge in high performance computing. The computer power increase allows now to solve flow problems on large grids (with close to 10^9 nodes). Moreover these large scale simulations can be performed on non-homogeneous turbulent flows. A reasonable amount of time is needed to converge statistics if the large grid size is combined with a large number of cores. To this end we developed a Navier-Stokes solver, dedicated to situations where only one direction is heterogeneous, and particularly suitable for massive parallel architecture. Based on an hybrid approach spectral/finite-difference, we use a volumetric decomposition of the domain to extend the FFTs computation to a large number of cores. Scalability tests using up to 32K cores as well as preliminary results of a full simulation are presented

    Cortical Learning of Recognition Categories: A Resolution of the Exemplar Vs. Prototype Debate

    Full text link
    Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.Defense Advanced Projects Research Agency SyNaPSE program (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC #801881-BS under HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (NSF SBE-0354378
    corecore