2,007 research outputs found

    Range separated hybrid density functional study of organic dye sensitizers on anatase TiO2_2 nanowires

    Get PDF
    The adsorption of organic molecules coumarin and the donor-π\pi-acceptor type tetrahydroquinoline (C2-1) on anatase (101) and (001) nanowires have been investigated using screened Coulomb hybrid density functional theory calculations. While coumarin forms single bond with the nanowire surface, C2-1 additionally exhibits bidentate mode giving rise to much stronger adsorption energies. Nonlinear solvation effects on the binding characteristics of the dye chromophores on the nanowire facets have also been examined. These two dye sensitizers show different electronic charge distributions for the highest occupied and the lowest unoccupied molecular states. We studied the electronic structures in terms of the positions of the band edges and adsorbate related band gap states and their effect on the absorption spectra of the dye-nanowire combined systems. These findings were interpreted and discussed from the view point of better light harvesting and charge separation as well as in relation to more efficient charge carrier injection into the semiconductor nanowire.Comment: 8 pages, 4 figures, and 1 tabl

    Theoretical and experimental investigation on nanostructures

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Investigation of solar cells and phototransistors based on hybrid copper (I) thiocyanate: methanofullerene materials

    Get PDF
    The combination of organic and inorganic semiconductors offers a route to the development of solar cells and other optoelectronic devices that combine flexibility, high efficiency and high stability. In this thesis, we have investigated the hybrid organic: inorganic system, copper (I) thiocyanate (CuSCN): phenyl C71 butyric methyl acid ester (PC70BM). We have shown that ~100 nm long CuSCN nanowires can be grown within PC70BM when a layer of PC70BM containing dilute CuSCN is deposited on top of a CuSCN layer on a heated substrate. Photovoltaic devices made from these nanowire-containing layers perform significantly better than devices made from CuSCN/PC70BM bilayers because the nanowires improve charge collection efficiency. The initial device based on a nanowire-containing CuSCN:PC70BM structure, the device shows ~5% power conversion efficiency. We show that these CuSCN NWs form well when the substrate temperature is about 115oC. We then discovered that by spin-coating interlayers with a CuSCN rich precursor solution between the compact CuSCN layer and CuSCN:PC70BM photoactive mixed layer, the power conversion efficiency could be further improved to nearly 6% power conversion efficiency. Finally, we measured the carrier mobility of CuSCN:PC70BM layer using field-effect transistors. We find the carrier mobility values for holes and electrons to be on the order of 10-3 to 10-2 cm2/Vs, similar to values for typical organic semiconducting materials. We have also characterized the same device as a phototransistor by illuminating the active area with light in the visible range. This work has demonstrated the concept of the initial application of CuSCN nanowires, which has never been reported in any organic: inorganic mixed layer. CuSCN nanowires could be a new approach for optimizing charge separation in light-absorbing acceptor systems.Open Acces

    Advanced Synchrotron Radiation Techniques for Nanostructured Materials

    Get PDF
    Nanostructured materials exploit physical phenomena and mechanisms that cannot be derived by simply scaling down the associated bulk structures and phenomena; furthermore, new quantum effects come into play in nanosystems. The exploitation of these emerging nanoscale interactions prompts the innovative design of nanomaterials. Understanding the behavior of materials on all length scales—from the nanostructure up to the macroscopic response—is a critical challenge for materials science. Modern analytical technologies based on synchrotron radiation (SR) allow for the non-destructive investigation of the chemical, electronic, and magnetic structure of materials in any environment. SR facilities have developed revolutionary new ideas and experimental setups for characterizing nanomaterials, involving spectroscopy, diffraction, scatterings, microscopy, tomography, and all kinds of highly sophisticated combinations of such investigation techniques. This book is a collection of contributions addressing several aspects of synchrotron radiation as applied to the investigation of chemical, electronic, and magnetic structure of nanostructured materials. The results reported here provide not only an interesting and multidisciplinary overview of the chemicophysical investigations of nanostructured materials carried out by state-of-the-art SR-induced techniques, but also an exciting glance into the future perspectives of nanomaterial characterization methods
    corecore