1,335 research outputs found

    Application of Nanowires for Retinal Regeneration

    Get PDF
    Nanowires aim at developing advanced architectures are gaining popularity for damaged neural systems. The retina with a complicated structure is an essential part of our visual nervous system. Any disorder inside retina could lead to blindness due to irregularity in transferring neural signals to the brain. In recent years, the emergence of nanostructures, as well as nanowires, has provided a viable means for enhancing the regeneration of retinal. Nanowires with the ability to sense light and converting it to the electrical signals simulate the extracellular electrical properties, which are the newest nanostructures for the retinal applications. The different structure of nanowires has been examined in vitro, and several others are undergoing in vivo for vision recovery. Among the structures, core-shell nanowires and functionalized nanowires with gold nanoparticles attract the attention for the regeneration of retinal neural systems. Herein, subsequently provide an introduction to the anatomy of the retina, and retinal disorders, the latest progress in the regeneration of retina and vision using nanowires will be reviewed. Also, the different structures, including core-shell and functionalized nanowires with nanoparticles, will be examined. Eventually, the point of view and perspective of applying nanowire in retinal regeneration will be offered

    SHEEP AS ANIMAL MODEL IN MINIMALLY INVASIVE NEUROSURGERY IN EDEN2020

    Get PDF
    Glioblastomas (GBMs) is a malignant type of central nervous system tumours and its presentation is almost 80% of all malignant primary brain neoplasia. This kind of tumour is highly invasive infiltrating the white matter area and is confined to the central nervous with a very poor patient outcome survival around 10 months. Of the existing treatment approaches, Convection Enhanced drug Delivery (CED) offers several advantages for the patient but still suffers from significant shortcomings. Enhanced Delivery Ecosystem for Neurosurgery in 2020 (EDEN2020) is a European project supported with a new catheter development as the key project point in an integrated technology platform for minimally invasive neurosurgery. Due to the particular anatomy and size, sheep (Ovis aries) have been selected as experimental large animal model and a new Head Frame system MRI/CT compatible has been made and validated ad hoc for the project. In order to understand experimentally the best target point for the catheter introduction a sheep brain DTI atlas has been created. Corticospinal tract (CST), corpus callosum (CC), fornix (FX), visual pathway (VP) and occipitofrontal fascicle (OF), have been identified bilaterally for all the animals. Three of these white matter tracts, the corpus callosum, the fornix and the corona radiata, have been selected to understand the drugs diffusion properties and create a computational model of diffusivity inside the white matter substance. The analysis have been conducted via Focused Ion Beam using scanning Electron Microscopy combined with focused ion beam milling and a 2D analysis and 3D reconstruction made. The results showed homogeneous myelination via detection of ~40% content of lipids in all the different fibre tracts and the fibrous organisation of the tissue described as composite material presenting elliptical tubular fibres with an average cross-sectional area of circa 0.52\u3bcm2 and an estimated mean diameter of 1.15\u3bcm. Finally, as the project is currently ongoing, we provided an overview on the future experimental steps focalised on the brain tissue damage after the rigid catheter introduction

    Argus® II Retinal Prosthesis System: Clinical & Functional Outcomes

    Get PDF
    Developing artificial visual systems to restore sight in blind patients has long been the dream of scientists, clinicians and the public at large. After decades of research, the greatest success in the field has been achieved with electronic retinal prostheses. To date, 3 retinal prosthetic systems have made the transition from laboratory / clinical research to entering the commercial market for clinical use, namely the Argus® II Retinal Prosthesis System (Second Sight), the alpha-IMS system (Retinal Implant AG), and the IRIS® II (Pixium Vision). The following body of work describes the Argus® II Retinal Prosthesis system, which obtained regulatory approval in the European Economic Area in 2011 (CE marking) and later on in the USA (FDA approval in February 2013), based on the results of an international multi-centre clinical feasibility trial (Clinical Trial identifier: NCT 00407602). This thesis aims to examine the long-term clinical and functional outcomes in an early cohort of subjects chronically implanted with the Argus® II system, from the original feasibility study. A further aim is to elucidate the characteristics of the artificial vision that is perceived and its long-term repeatability and reproducibility in individual subjects. These two broad aims will assist in understanding the nature of the visual performance provided by this device, as well as to add to the current data that is defining the feasibility of constructing predictable pixelated patterns to achieve useful artificial vision in the future. Finally, we explored the feasibility of real-time imaging of visual cortex activation in response to electrical retinal stimulation with the Argus® II system, using functional near infra-red spectroscopy (fNIRS). Development of this real-time imaging tool will enable future investigations into the differences in the cortical activities in response to different stimulations and in different subjects. This may in turn help us understand the variability in their visual performance, as well as to further explore the extent and effect of cross-modal plasticity at the cortical level, in this cohort of patients who have been deprived of visual inputs for decades. Visual function was assessed in terms of: a) form recognition and b) spatial localisation under both 2-dimensional (2D) screen-based laboratory settings and 3-dimensional (3D) paradigms simulating real-life settings. A prospective study of 11 Argus® II subjects showed that the subjects could identify distinct geometric shapes presented in high contrast better with the prosthetic system switched on (median % of correct identification = 20.0%, IQR = 18.8), versus off (median = 12.5%, IQR = 5.0). The accuracy of shapes identification could be further improved by enhancing the outlines of the geometric shape (median = 33.1%, IQR = 21.6). A further prospective study from a subset of 7 subjects showed that this 2D shape identification could be translated into improved identification of 3D objects. These subjects could identify 8 common daily-life objects presented in high contrast with the prosthetic system switched on (median = 31.3%, IQR = 20.3) versus off (median = 12.5%, IQR = 12.5). Scrambling of the transmission signals within the prosthetic system in order to separate light information from form information (i.e. “scrambled mode”) hindered the identification in some but not all subjects (median = 25.0%, IQR = 12.5). The accuracy of object identification could also be improved by enhancing the edges of objects (median = 43.8%, IQR = 15.6). Previously published data showed that Argus® II subjects were able to locate and point to white squares presented on touch screens against a black background more accurately with the prosthetic system switched on versus off. We demonstrated with a prospective study of 5 subjects that they could localise an object on the table, reach out and grasp the object (prehension) with great accuracy (66.7 – 100%) when the prosthetic system was switched on, versus no object prehension (0%) with the system switched off. A prospective study of 6 Argus® II subjects illustrated that while there was a wide variation in the shape and size of the phosphenes perceived by individual subjects, the elicited phosphenes were consistently reproducible in each subject using fixed stimulating parameters, with inter-stimuli intervals ranging from 20 minutes apart, down to 1 second. The perceived location of the phosphenes grossly matched retinotopic agreement, with 4 subjects drawing phosphenes in the same visual field quadrant as predicted by the relative stimulus-fovea position, and 2 subjects depicting phosphenes in the same hemi-field as the expected locations. A retrospective study of 3 Argus® II subjects who underwent MRI brain scan (for unrelated medical reasons) showed that MRI brain scans of up to 1.5 Tesla field strength appeared to have no detrimental effect on the subjects and their implant function. The Argus® II implant produced an artefact of around 50mm x 50mm in size which would prevent visualisation of structures within the orbit, but visualisation of surrounding tissues outside this areas are unaffected. The use of functional MRI as a tool of exploring visual cortex activation in Argus® II subjects was discounted, due to concerns of signal interference from the radiofrequency telemetry of Argus® II system with that of MRI. Subsequently, we have demonstrated in a prospective study that an alternative neuro-imaging technique, functional near infra-red spectroscopy (fNIRS), was capable of capturing real-time cortical activation in 5 out of 6 Argus® II subjects, and maybe a feasible tool for future investigation into cortical function and interactions. The work in this thesis has shown that the Argus® II retinal prosthesis system could improve visual function both in terms of form recognition, as well as object localisation in 3D in situations simulating real-life settings, in a cohort of patients with end-stage retinitis pigmentosa or other outer retinal diseases such as choroideremia. The wide variation in the visual performance level observed could in part be attributable to the diversity in the phosphene features perceived by these subjects. Nevertheless, the consistency and reproducibility with which these phosphenes could be elicited, with fixed stimulating parameters within each subject, provides an encouraging basis for the construction of more complicated pixelated images. Future work to determine the underlying factors influencing the perceived phosphene characteristics, may allow for better prediction of functional outcome, which could in turn be useful for patient selection and tailored preoperative counselling. For those subjects already implanted with the Argus® II system, future work into determining the suitable stimulating parameters for each electrode / quad stimulation may be required for individual subjects, to achieve the construction of optimised and useful, pixelated prosthetic vision

    Glosarium Kedokteran

    Get PDF

    Ex-vivo and In-vivo Characterization of Human Accommodation

    Get PDF
    A completely satisfying approach to restoring accommodation still needs to be developed. Besides, there are considerable discrepancies between objective and subjective trials to evaluate the therapeutic success. A substantial biomechanical understanding of all structures and processes involved in accommodation as well as presbyopia are needed to develop promising new strategies. This contribution focuses on developing advanced imaging techniques to create a basic understanding of accommodation and presbyopia and to evaluate existing concepts for restoring accommodation. Besides, the emphasis is also on replacing stiff presbyopic lenses by a material that imitates the young crystalline lens

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 122, December 1973

    Get PDF
    This special bibliography lists 343 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1973
    • …
    corecore