954 research outputs found

    On Meshfree GFDM Solvers for the Incompressible Navier-Stokes Equations

    Full text link
    Meshfree solution schemes for the incompressible Navier--Stokes equations are usually based on algorithms commonly used in finite volume methods, such as projection methods, SIMPLE and PISO algorithms. However, drawbacks of these algorithms that are specific to meshfree methods have often been overlooked. In this paper, we study the drawbacks of conventionally used meshfree Generalized Finite Difference Method~(GFDM) schemes for Lagrangian incompressible Navier-Stokes equations, both operator splitting schemes and monolithic schemes. The major drawback of most of these schemes is inaccurate local approximations to the mass conservation condition. Further, we propose a new modification of a commonly used monolithic scheme that overcomes these problems and shows a better approximation for the velocity divergence condition. We then perform a numerical comparison which shows the new monolithic scheme to be more accurate than existing schemes

    Finite length effects in Taylor-Couette flow

    Get PDF
    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cyclinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments

    A FIC-based stabilized finite element formulation for turbulent flows

    Get PDF
    We present a new stabilized finite element (FEM) formulation for incompressible flows based on the Finite Increment Calculus (FIC) framework. In comparison to existing FIC approaches for fluids, this formulation involves a new term in the momentum equation, which introduces non-isotropic dissipation in the direction of velocity gradients. We also follow a new approach to the derivation of the stabilized mass equation, inspired by recent developments for quasi-incompressible flows. The presented FIC-FEM formulation is used to simulate turbulent flows, using the dissipation introduced by the method to account for turbulent dissipation in the style of implicit large eddy simulation.Peer ReviewedPostprint (author's final draft

    Modeling electrochemical systems with weakly imposed Dirichlet boundary conditions

    Full text link
    Finite element modeling of charged species transport has enabled analysis, design, and optimization of a diverse array of electrochemical and electrokinetic devices. These systems are represented by the Poisson-Nernst-Planck equations coupled with the Navier-Stokes equation, with a key quantity of interest being the current at the system boundaries. Accurately computing the current flux is challenging due to the small critical dimension of the boundary layers (small Debye layer) that require fine mesh resolution at the boundaries. We resolve this challenge by using the Dirichlet-to-Neumanntransformation to weakly impose the Dirichlet conditions for the Poisson-Nernst-Planck equations. The results obtained with weakly imposed Dirichlet boundary conditions showed excellent agreement with those obtained when conventional boundary conditions with highly resolved mesh we reemployed. Furthermore, the calculated current flux showed faster mesh convergence using weakly imposed conditions compared to the conventionally imposed Dirichlet boundary conditions. We illustrate the approach on canonical 3D problems that otherwise would have been computationally intractable to solve accurately. This approach substantially reduces the computational cost of model-ing electrochemical systems.Comment: 24 pages, 14 figure

    Improvement in Computational Fluid Dynamics Through Boundary Verification and Preconditioning

    Get PDF
    This thesis provides improvements to computational fluid dynamics accuracy and ef- ficiency through two main methods: a new boundary condition verification procedure and preconditioning techniques. First, a new verification approach that addresses boundary conditions was developed. In order to apply the verification approach to a large range of arbitrary boundary condi- tions, it was necessary to develop unifying mathematical formulation. A framework was developed that allows for the application of Dirichlet, Neumann, and extrapolation bound- ary condition, or in some cases the equations of motion directly. Verification of boundary condition techniques was performed using exact solutions from canonical fluid dynamic test cases. Second, to reduce computation time and improve accuracy, preconditioning algorithms were applied via artificial dissipation schemes. A new convective upwind and split pressure (CUSP) scheme was devised and was shown to be more effective than traditional precon- ditioning schemes in certain scenarios. The new scheme was compared with traditional schemes for unsteady flows for which both convective and acoustic effects dominated. Both boundary conditions and preconditioning algorithms were implemented in the context of a strand grid solver. While not the focus of this thesis, strand grids provide automatic viscous quality meshing and are suitable for moving mesh overset problems

    On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model

    Get PDF
    Aortic flow and pressure result from the interactions between the heart and arterial system. In this work, we considered these interactions by utilizing a lumped parameter heart model as an inflow boundary condition for three-dimensional finite element simulations of aortic blood flow and vessel wall dynamics. The ventricular pressure–volume behavior of the lumped parameter heart model is approximated using a time varying elastance function scaled from a normalized elastance function. When the aortic valve is open, the coupled multidomain method is used to strongly couple the lumped parameter heart model and three-dimensional arterial models and compute ventricular volume, ventricular pressure, aortic flow, and aortic pressure. The shape of the velocity profiles of the inlet boundary and the outlet boundaries that experience retrograde flow are constrained to achieve a robust algorithm. When the aortic valve is closed, the inflow boundary condition is switched to a zero velocity Dirichlet condition. With this method, we obtain physiologically realistic aortic flow and pressure waveforms. We demonstrate this method in a patient-specific model of a normal human thoracic aorta under rest and exercise conditions and an aortic coarctation model under pre- and post-interventions

    High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver

    Get PDF
    We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by Misra & Pullin [45] and Chung & Pullin [14]), accounts for an explicit treatment of unresolved stresses and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable results for pipe flows at Re_Ď„ = 2Ă—10^3 and Re_Ď„ = 1.8Ă—10^5 in terms of turbulence statistics. Additionally, we conclude that implicit simulations are enhanced when including the wall model and provide the correct statistics near walls
    • …
    corecore