2,124 research outputs found

    Analysis of the geomagnetic activity of the D(st) index and self-affine fractals using wavelet transforms

    Get PDF
    The geomagnetic activity of the D(st) index is analyzed using wavelet transforms and it is shown that the D(st) index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the D(st) index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the D(st) index, with a Hurst exponent H≈0.5 (power-law exponent β≈2) at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the D(st) index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the D(st) index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary

    Fourier phase analysis in radio-interferometry

    Get PDF
    Most statistical tools used to characterize the complex structures of the interstellar medium can be related to the power spectrum, and therefore to the Fourier amplitudes of the observed fields. To tap into the vast amount of information contained in the Fourier phases, one may consider the probability distribution function (PDF) of phase increments, and the related concepts of phase entropy and phase structure quantity. We use these ideas here with the purpose of assessing the ability of radio-interferometers to detect and recover this information. By comparing current arrays such as the VLA and Plateau de Bure to the future ALMA instrument, we show that the latter is definitely needed to achieve significant detection of phase structure, and that it will do so even in the presence of a fair amount of atmospheric phase fluctuations. We also show that ALMA will be able to recover the actual "amount'' of phase structure in the noise-free case, if multiple configurations are used.Comment: Accepted for publication in "Astronomy & Astrophysics

    Lagrangian Time Series Models for Ocean Surface Drifter Trajectories

    Get PDF
    This paper proposes stochastic models for the analysis of ocean surface trajectories obtained from freely-drifting satellite-tracked instruments. The proposed time series models are used to summarise large multivariate datasets and infer important physical parameters of inertial oscillations and other ocean processes. Nonstationary time series methods are employed to account for the spatiotemporal variability of each trajectory. Because the datasets are large, we construct computationally efficient methods through the use of frequency-domain modelling and estimation, with the data expressed as complex-valued time series. We detail how practical issues related to sampling and model misspecification may be addressed using semi-parametric techniques for time series, and we demonstrate the effectiveness of our stochastic models through application to both real-world data and to numerical model output.Comment: 21 pages, 10 figure

    The Fractal Geometry of the Cosmic Web and its Formation

    Full text link
    The cosmic web structure is studied with the concepts and methods of fractal geometry, employing the adhesion model of cosmological dynamics as a basic reference. The structures of matter clusters and cosmic voids in cosmological N-body simulations or the Sloan Digital Sky Survey are elucidated by means of multifractal geometry. A non-lacunar multifractal geometry can encompass three fundamental descriptions of the cosmic structure, namely, the web structure, hierarchical clustering, and halo distributions. Furthermore, it explains our present knowledge of cosmic voids. In this way, a unified theory of the large-scale structure of the universe seems to emerge. The multifractal spectrum that we obtain significantly differs from the one of the adhesion model and conforms better to the laws of gravity. The formation of the cosmic web is best modeled as a type of turbulent dynamics, generalizing the known methods of Burgers turbulence.Comment: 35 pages, 8 figures; corrected typos, added references; further discussion of cosmic voids; accepted by Advances in Astronom
    • …
    corecore