26,444 research outputs found

    Robust Simulation for Hybrid Systems: Chattering Path Avoidance

    Get PDF
    The sliding mode approach is recognized as an efficient tool for treating the chattering behavior in hybrid systems. However, the amplitude of chattering, by its nature, is proportional to magnitude of discontinuous control. A possible scenario is that the solution trajectories may successively enter and exit as well as slide on switching mani-folds of different dimensions. Naturally, this arises in dynamical systems and control applications whenever there are multiple discontinuous control variables. The main contribution of this paper is to provide a robust computational framework for the most general way to extend a flow map on the intersection of p intersected (n--1)-dimensional switching manifolds in at least p dimensions. We explore a new formulation to which we can define unique solutions for such particular behavior in hybrid systems and investigate its efficient computation/simulation. We illustrate the concepts with examples throughout the paper.Comment: The 56th Conference on Simulation and Modelling (SIMS 56), Oct 2015, Link\"oping, Sweden. 2015, Link\"oping University Pres

    Hybrid sliding mode control for motorised space tether spin-up when coupled with axial oscillation

    Get PDF
    A specialised hybrid controller is applied for the control of motorised space tether spin-up coupled with an axial oscillation phenomenon. A six degree of freedom dynamic model of a motorised momentum exchange tether is used as the basis for interplanetary payload exchange in the context of control. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A simulation with a given initial condition data has been devised in a connecting programme between control code written in MATLAB and dynamics simulation code constructed within MATHEMATICA. It is shown that there is an enhanced level of spin-up control for the six degree of freedom motorised momentum exchange tether system using the specialised hybrid controller

    Reduction of dynamical biochemical reaction networks in computational biology

    Get PDF
    Biochemical networks are used in computational biology, to model the static and dynamical details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multi-scaleness is another property of these networks, that can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler networks, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state and quasi-equilibrium approximations, and provide practical recipes for model reduction of linear and nonlinear networks. We also discuss the application of model reduction to backward pruning machine learning techniques

    Teaching, Analyzing, Designing and Interactively Simulating of Sliding Mode Control

    Get PDF
    This paper introduces an interactive methodology to analize, design, and simulate sliding model controllers for R2 linear systems. This paper reviews sliding mode basic concepts and design methodologies and describes an interactive tool which has been developed to support teaching in this field. The tool helps students by generating a nice graphical and interactive display of most relevant concepts. This fact can be used so that students build their own intuition about the role of different parameters in a sliding mode controller. Described application has been coded with Sysquake using an event-driven solver technique. The Sysquake allows using precise integration methods in real time and handling interactivity in a simple manner.Peer ReviewedPostprint (published version

    Hybrid fuzzy sliding mode control for motorised space tether spin-up when coupled with axial and torsional oscillation

    Get PDF
    A specialised hybrid controller is applied to the control of a motorised space tether spin-up space coupled with an axial and a torsional oscillation phenomenon. A seven-degree-of-freedom (7-DOF) dynamic model of a motorised momentum exchange tether is used as the basis for interplanetary payload exchange in the context of control. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial and torsional elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A simulation with given initial condition data has been devised in a connecting programme between control code written in MATLAB and dynamics simulation code constructed within MATHEMATICA. It is shown that there is an enhanced level of spin-up control for the 7-DOF motorised momentum exchange tether system using the specialised hybrid controller. hybrid controller

    Teaching, Analyzing, Designing and Interactively Simulating of Sliding Mode Control

    Get PDF
    This paper introduces an interactive methodology to analize, design, and simulate sliding model controllers for R2 linear systems. This paper reviews sliding mode basic concepts and design methodologies and describes an interactive tool which has been developed to support teaching in this field. The tool helps students by generating a nice graphical and interactive display of most relevant concepts. This fact can be used so that students build their own intuition about the role of different parameters in a sliding mode controller. Described application has been coded with Sysquake using an event-driven solver technique. The Sysquake allows using precise integration methods in real time and handling interactivity in a simple manner.Peer ReviewedPostprint (published version
    corecore