2,415 research outputs found

    Methodology for tidal turbine representation in ocean circulation model

    Get PDF
    The present method proposes the use and adaptation of ocean circulation models as an assessment tool framework for tidal current turbine (TCT) array layout optimization. By adapting both momentum and turbulence transport equations of an existing model, the present TCT representation method is proposed to extend the actuator disc concept to 3-D large-scale ocean circulation models. Through the reproduction of experimental flume tests and grid dependency tests, this method has shown its numerical coherence as well as its ability to simulate accurately both momentum and turbulent turbine-induced perturbations in both near and far wakes in a relatively short period of computation time. Consequently the present TCT representation method is a very promising basis for the development of a TCT array layout optimization tool

    Grid computing and molecular simulations: the vision of the eMinerals Project

    Get PDF
    This paper discusses a number of aspects of using grid computing methods in support of molecular simulations, with examples drawn from the eMinerals project. A number of components for a useful grid infrastructure are discussed, including the integration of compute and data grids, automatic metadata capture from simulation studies, interoperability of data between simulation codes, management of data and data accessibility, management of jobs and workflow, and tools to support collaboration. Use of a grid infrastructure also brings certain challenges, which are discussed. These include making use of boundless computing resources, the necessary changes, and the need to be able to manage experimentation

    Riverine Carbon Cycling Over The Past Century in the Mid‐Atlantic Region of the United States

    Get PDF
    The lateral transport and degassing of carbon in riverine ecosystems is difficult to quantify on large spatial and long temporal scales due to the relatively poor representation of carbon processes in many models. Here, we coupled a scale‐adaptive hydrological model with the Dynamic Land Ecosystem Model to simulate key riverine carbon processes across the Chesapeake and Delaware Bay Watersheds from 1900 to 2015. Our results suggest that throughout this time period riverine CO2 degassing and lateral dissolved inorganic carbon fluxes to the coastal ocean contribute nearly equally to the total riverine carbon outputs (mean ± standard deviation: 886 ± 177 Gg C∙yr−1 and 883 ± 268 Gg C∙yr−1, respectively). Following in order of decreasing importance are the lateral dissolved organic carbon flux to the coastal ocean (293 ± 81 Gg C∙yr−1), carbon burial (118 ± 32 Gg C∙yr−1), and lateral particulate organic carbon flux (105 ± 35 Gg C∙yr−1). In the early 2000s, carbon export to the coastal ocean from both the Chesapeake and Delaware Bay watersheds was only 15%–20% higher than it was in the early 1900s (decade), but it showed a twofold increase in standard deviation. Climate variability (changes in temperature and precipitation) explains most (225 Gg C∙yr−1) of the increase since 1900, followed by changes in atmospheric CO2 (82 Gg C∙yr−1), atmospheric nitrogen deposition (44 Gg C∙yr−1), and applications of nitrogen fertilizer and manure (27 Gg C∙yr−1); in contrast, land conversion has resulted in a 188 Gg C∙yr−1 decrease in carbon export

    Impact of environmental turbulence on the performance and loadings of a tidal stream turbine

    Get PDF
    A large-eddy simulation (LES) of a laboratory-scale horizontal axis tidal stream turbine operating over an irregular bathymetry in the form of dunes is performed. The Reynolds number based on the approach velocity and the chord length of the turbine blades is approximately 60,000. The simulated turbine is a 1:30 scale model of a full-scale prototype and both turbines operate at very similar tip-speed ratio of λ ≈ 3. The simulations provide quantitative evidence of the effect of seabed-induced turbulence on the instantaneous performance and structural loadings of the turbine revealing how large-scale, energetic turbulence structures affect turbine performance and bending moments of the rotor blades. The data analysis shows that wake recovery is notably enhanced in comparison to the same turbine operating above a flat-bed and this is due to the higher turbulence levels generated by the dune. The results demonstrate the need for studying in detail the flow and turbulence characteristics at potential tidal turbine deployment sites and to incorporate observed large-scale velocity and pressure fluctuations into the structural design of the turbines

    Evaluation of biomimetic approach to drag reduction of time trial helmet using computational fluid dynamics

    Get PDF
    Master's thesis in Structural engineeringComputational ïŹ‚uid dynamic (CFD) using OpenFOAM are performed to investigate aerodynamics of a time trial bicycle helmet. Mesh generation by the two softwares OpenFOAM and Pointwise are compared, to detect differences between them. A new type of helmet, inspired by the shell of an armadillo is presented. Results are compared with earlier wind tunnel experiment to validate if simulations without the cyclist is feasible. Simulations have focus on drag force and how mesh inïŹ‚uence the results. Results indicates the same tendencies as wind tunnel experiment performed with a helmet attached to human. Computational time will be saved running simulations with only the helmet. Quality check gave better results for the mesh created with Pointwise than for OpenFOAM. Pointwise’s properties converged with half of the amount of cells compared to OpenFOAM’s, and were less time consuming. Pointwise generated proper layers despite coarse far ïŹeld, while OpenFOAM require ïŹner far ïŹeld to properly generate layers. The original helmet were modiïŹed by inverse kinematics, forcing a smaller frontal area. Results showed an reduction in air resistance at 22% and 13%

    Development of the Distributed Points Method with Application to Cavitating Flow

    Get PDF
    A mesh-less method for solving incompressible, multi-phase flow problems has been developed and is discussed along with the presentation of benchmark results showing good agreement with theoretical and experimental results. Results of a systematic, parametric study of the single phase flow around a 2D circular cylinder at Reynolds numbers up to 1000 are presented and discussed. Simulation results show good agreement with experimental results. Extension of the method to deal with multiphase flow including liquid-to-vapor phase transition along with applications to cavitating flow are discussed. Insight gleaned from numerical experiments of the cavity closure problem are discussed along with recommendations for additional research. Several conclusions regarding the use of the method are made

    Development of the Distributed Points Method with Application to Cavitating Flow

    Get PDF
    A mesh-less method for solving incompressible, multi-phase flow problems has been developed and is discussed along with the presentation of benchmark results showing good agreement with theoretical and experimental results. Results of a systematic, parametric study of the single phase flow around a 2D circular cylinder at Reynolds numbers up to 1000 are presented and discussed. Simulation results show good agreement with experimental results. Extension of the method to deal with multiphase flow including liquid-to-vapor phase transition along with applications to cavitating flow are discussed. Insight gleaned from numerical experiments of the cavity closure problem are discussed along with recommendations for additional research. Several conclusions regarding the use of the method are made

    Irregular self-similar configurations of shock-wave impingement on shear layers

    Get PDF
    An oblique shock impinging on a shear layer that separates two uniform supersonic streams, of Mach numbers M1 and M2, at an incident angle σi can produce regular and irregular interactions with the interface. The region of existence of regular shock refractions with stable flow structures is delineated in the parametric space (M1,M2,σi) considering oblique-shock impingement on a supersonic vortex sheet of infinitesimal thickness. It is found that under supercritical conditions, the oblique shock fails to deflect both streams consistently and to provide balanced flow properties downstream. In this circumstance, the flow renders irregular configurations which, in the absence of characteristic length scales, exhibit self-similar pseudosteady behaviours. These cases involve shocks moving upstream at constant speed and increasing their intensity to comply with equilibrium requirements. Differences in the variation of propagation speed among the flows yield pseudosteady configurations that grow linearly with time. Supercritical conditions are described theoretically and reproduced numerically using highly resolved inviscid simulation
    • 

    corecore