807 research outputs found

    Biomechanical models of the lower limb and pelvis, for female human gait in regular and overload conditions related to pregnancy.

    Get PDF
    Doutoramento em Motricidade Humana na especialidade de BiomecânicaA gravidez é uma fase especial da vida , considerando as adaptações morfológicas, fisiológicas, biomecânicas e hormonais vivenciadas pelas mulheres durante cerca de 40 semanas e no período pós-parto, podendo modificar o padrão de marcha e contribuir para uma sobrecarga no sistema músculo-esquelético, causando dor nos membros inferiores, bacia e zona lombar. Os objetivos do presente trabalho foram: 1) analisar a marcha de mulheres grávidas no segundo trimestre; 2) comparar as adaptações biomecânicas da marcha, entre as mulheres grávidas no segundo trimestre, mulheres não grávidas e mulheres com condições de sobrecarga artificiais; 3) analisar modelos biomecânicos com quatro set ups diferentes de análise; e, 4) analisar um modelo de contacto que determina a força vertical de reação do apoio. Os resultados demonstraram que as mulheres grávidas têm uma padrão de marcha similar ao normal. Observou-se que o ganho do peso no tronco aumenta o tempo das fases de apoio e de duplo apoio, quer nas mulheres grávidas quer nas mulheres com carga adicional. A resposta ao momento externo flexor da anca está relacionada com maior atividade dos extensores para suportar a carga anterior do tronco na direção da translação do centro de massa. Nas mulheres grávidas, o modelo universal-revolução-esférica afetou mais as variáveis cinemáticas quando comparado com o modelo de juntas com seis graus de liberdade. O modelo de contacto entre o pé e o solo, sobrestimou as forças verticais de reação. O aumento da massa do pé, devido ao inchaço consequente da gravidez, reduz a rigidez durante a fase de apoio. Os resultados do presente trabalho serão úteis para promover a investigação biomecânica do padrão de marcha durante a gravidez.FCT - Fundação para Ciência e a Tecnologi

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling

    Get PDF
    The generation of subject-specific musculoskeletal models of the lower limb has become a feasible taskthanks to improvements in medical imaging technology and musculoskeletal modelling software.Nevertheless, clinical use of these models in paediatric applications is still limited for what concernsthe estimation of muscle and joint contact forces. Aiming to improve the current state of the art, amethodology to generate highly personalized subject-specific musculoskeletal models of the lower limbbased on magnetic resonance imaging (MRI) scans was codified as a step-by-step procedure and appliedto data from eight juvenile individuals. The generated musculoskeletal models were used to simulate 107gait trials using stereophotogrammetric and force platform data as input. To ensure completeness of themodelling procedure, muscles’ architecture needs to be estimated. Four methods to estimate muscles’maximum isometric force and two methods to estimate musculotendon parameters (optimal fiber lengthand tendon slack length) were assessed and compared, in order to quantify their influence on the models’output. Reported results represent the first comprehensive subject-specific model-based characterizationof juvenile gait biomechanics, including profiles of joint kinematics and kinetics, muscle forces and jointcontact forces. Our findings suggest that, when musculotendon parameters were linearly scaled from areference model and the muscle force-length-velocity relationship was accounted for in the simulations,realistic knee contact forces could be estimated and these forces were not sensitive the method used tocompute muscle maximum isometric force

    Preliminary study of a customised total knee implant with musculoskeletal and dynamic squatting simulation

    Get PDF
    Customised total knee replacement could be the future therapy for knee joint osteoarthritis. A preliminary design of a customised total knee implant based on knee anatomy was studied in this article. To evaluate its biomechanical performance, a dynamic finite element model based on the Oxford knee rig was created to simulate a squatting motion. Unlike previous research, this dynamic model was simulated with patient-specific muscle and joint loads that were calculated from an OpenSim musculoskeletal model. The dynamic response of the customised total knee implant was simulated under three cruciate ligament scenarios: both cruciate ligaments retained, only anterior cruciate ligament removed and both cruciate ligaments removed. In addition, an off-the-shelf symmetric total knee implant with retained cruciate ligaments was simulated for comparison analysis. The customised total knee implant with both cruciate ligaments retained showed larger ranges of femoral external rotation and posterior translation than the symmetric total knee implant. The motion of the customised total knee implant was also in good agreement with a healthy knee. There were no big differences in the tibiofemoral compressive forces in the customised total knee implant model under the three scenarios. These forces were generally consistent with other experimental and simulation results. However, the customised total knee implant design resulted in larger tibiofemoral compressive force than the symmetric total knee implant after 50° knee flexion, which was caused by the larger tibiofemoral relative motion

    Otimização muscle-in-the-loop em tempo real para reabilitação física com um exosqueleto ativo: uma mudança de paradigma

    Get PDF
    Assisting human locomotion with a wearable robotic orthosis is still quite challenging, largely due to the complexity of the neuromusculoskeletal system, the time-varying dynamics that accompany motor adaptation, and the uniqueness of every individual’s response to the assistance given by the robot. To this day, these devices have not met their well-known promise yet, mostly due to the fact that they are not perfectly suitable for the rehabilitation of neuropathologic patients. One of the main challenges hampering this goal still relies on the interface and co-dependency between the human and the machine. Nowadays, most commercial exoskeletons replay pre-defined gait patterns, whereas research exoskeletons are switching to controllers based on optimized torque profiles. In most cases, the dynamics of the human musculoskeletal system are still ignored and do not take into account the optimal conditions for inducing a positive modulation of neuromuscular activity. This is because both rehabilitation strategies are still emphasized on the macro level of the whole joint instead of focusing on the muscles’ dynamics and activity, which are the actual anatomical elements that may need to be rehabilitated. Strategies to keep the human in the loop of the exoskeleton’s control laws in real-time may help to overcome these challenges. The main purpose of the present dissertation is to make a paradigm shift in the approach on how the assistance that is given to a subject by an exoskeleton is modelled and controlled during physical rehabilitation. Therefore, in the scope of the present work, it was intended to design, concede, implement, and validate a real-time muscle-in-the-loop optimization model to find the best assistive support ratio that would induce optimal rehabilitation conditions to a specific group of impaired muscles while having a minimum impact on the other healthy muscles. The developed optimization model was implemented in the form of a plugin and was integrated on a neuromechanical model-based interface for driving a bilateral ankle exoskeleton. Experimental pilot tests evaluated the feasibility and effectiveness of the model. Results of the most significant pilots achieved EMG reductions up to 61 ± 3 % in Soleus and 41 ± 10 % in Gastrocnemius Lateralis. Moreover, results also demonstrated the efficiency of the optimization’s specific reduction on rehabilitation by looking into the muscular fatigue after each experiment. Finally, two parallel preliminary studies emerged from the pilots, which looked at muscle adaptation, after a new assistive condition had been applied, over time and at the effect of the lateral positioning of the exoskeleton’s actuators on the leg muscles.Auxiliar a locomoção humana com uma ortose robótica ainda é bastante desafiante, em grande parte devido à complexidade do sistema neuromusculoesquelético, à dinâmica variável no tempo que acompanha a adaptação motora e à singularidade da resposta de cada indivíduo à assistência dada pelo robô. Até hoje, está por cumprir a promessa inicial destes dispositivos, principalmente devido ao facto de não serem perfeitamente adequados para a reabilitação de pacientes neuropatológicos. Um dos principais desafios que dificultam esse objetivo foca-se ainda na interface e na co-dependência entre o ser humano e a máquina. Hoje em dia, a maioria dos exoesqueletos comerciais reproduz padrões de marcha predefinidos, enquanto que os exoesqueletos em investigação estão só agora a mudar para controladores com base em perfis de binário otimizados. Na maioria dos casos, a dinâmica do sistema musculoesquelético humano ainda é ignorada e não tem em consideração as condições ideais para induzir uma modulação positiva da atividade neuromuscular. Isso ocorre porque ambas as estratégias de reabilitação ainda são enfatizadas no nível macro de toda a articulação, em vez de se concentrar na dinâmica e atividade dos músculos, que são os elementos anatómicos que realmente precisam de ser reabilitados. Estratégias para manter o ser humano em loop nos comandos que controlam o exoesqueleto em tempo real podem ajudar a superar estes desafios. O principal objetivo desta dissertação é fazer uma mudança de paradigma na abordagem em como a assistência que é dada a um sujeito por um exosqueleto é modelada e controlada durante a reabilitação física. Portanto, no contexto do presente trabalho, pretendeu-se projetar, conceder, implementar e validar um modelo de otimização muscle-in-the-loop em tempo real para encontrar a melhor relação de suporte capaz de induzir as condições ideais de reabilitação para um grupo específico de músculos fragilizados, tendo um impacto mínimo nos outros músculos saudáveis. O modelo de otimização desenvolvido foi implementado na forma de um plugin e foi integrado numa interface baseada num modelo neuromecânico para o controlo de um exoesqueleto bilateral de tornozelo. Testes experimentais piloto avaliaram a viabilidade e a eficácia do modelo. Os resultados dos testes mais significativos demonstraram reduções de EMG de até 61 ± 3 % no Soleus e 41 ± 10 % no Gastrocnemius Lateral. Adicionalmente, os resultados demonstraram também a eficiência em reabilitação da redução específica no EMG devido à otimização tendo em conta a fadiga muscular após cada teste. Finalmente, dois estudos preliminares paralelos emergiram dos testes piloto, que analisaram a adaptação muscular após uma nova condição assistiva ter sido definida ao longo do tempo e o efeito do posicionamento lateral dos atuadores do exoesqueleto nos músculos da perna.Mestrado em Engenharia Biomédic

    Enhancing Biomechanical Function through Development and Testing of Assistive Devices for Shoulder Impairment and Total Limb Amputation

    Get PDF
    Assistive devices serve as a potential for restoring sensorimotor function to impaired individuals. My research focuses on two assistive devices: a passive shoulder exoskeleton and a muscle-driven endoprosthesis (MDE). Previous passive shoulder exoskeletons have focused on testing during static loading conditions in the shoulder. However, activities of daily living are based on dynamic tasks. My research for passive shoulder exoskeletons analyzes the effect that a continuous passive assistance has on shoulder biomechanics. In my research I showed that passive assistance decreases the muscular activation in muscles responsible for positive shoulder exoskeleton. An MDE has the potential to have accurate and precise control of movement as well as restore a sense of proprioception to the user. Such a transformative and invasive device has never previously been tested. Therefore, my research focused on analyzing fundamental principles of the MDE in an in-vivo rabbit model. The two concepts I tested in my research were the feasibility of implanting an orthopedic device underneath the skin at the distal end of a limb following amputation and the locomotor restorative capabilities of an artificial tendon used for muscle-device connection. In my work I proved the feasibility of implanting fully-footed rigid endoprostheses underneath the skin and isolated the primary factors for a successful surgery and recovery. In addition, my research showed that although artificial tendons have the potential to restore locomotor function, proper in-situ tendon lengths must be achieved for optimal movement. This research informed the design and testing of a fully jointed muscle-driven endoprosthesis prototype
    corecore