75,956 research outputs found

    A Collision Detection Algorithm For Virtual Robot-Centered Flexible Manufacturing Cell

    Get PDF
    Collision detection is crucial in virtual manufacturing applications such as virtual prototyping, virtual assembly and virtual robot path planning. For accurate simulation of manufacturing systems and processes in virtual environment, physical interaction with the objects in the scene are triggered by collision detection. This thesis presents a collision detection algorithm for accurate simulation of a virtual flexible manufacturing cell. The technique utilizes the narrow phase approach in detecting collision detection of non-convex object by testing collision between basic primitive and polygon. This algorithm is implemented in a virtual flexible manufacturing cell for the loading and unloading process performed by the robot. The robot’s gripper is treated as non-convex object and the exact point of collision is represented with a virtual sphere and collision is tested between the virtual sphere and the polygon. To verify the collision detection algorithm, it is tested with different positions and heights of the storage system during simulation of the virtual flexible manufacturing cell. The results showed that the collision detection algorithm can be used to support the concept of hardware reconfigurablility of FMC which can be achieved by changing, removing, recombining or rearranging its manufacturing elements in order to meet new demands such as introduction of new product or change

    Simulation Modeling in Manufacturing Cell Design

    Get PDF
    The interwoven phases of the manufacturing process in Computer Integrated Manufacturing (CIM) require a carefully designed facility. Simulation modeling can be combined with other techniques to provide a rigorous methodology for CIM system design. This paper describes CIM, simulation ana their relationship. A case study demonstrates the described methodology in the design of a flexible manufacturing cell

    A Simulation Tool for the Manufacturing Engineering Department's Flexible Manufacturing Cell

    Get PDF
    The flexible manufacturing cell in the manufacturing engineering department's computer integrated manufacturing systems lab is used to study manufacturing processes. A loop conveyor, an automated storage and retrieval system, robots and a lathe station are configured to exemplify a manufacturing process. This software was developed to allow the user to alter, modify and/or expand on the manufacturing process represented, and to conduct simulation studies relative to it. It presumes that the basic structure of the cell is to remain intact, while the type of and number of stations, and the behavior of the conveyor at each of the various stations, can be modified

    Design and development of a hybrid control system for flexible manufacturing : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

    Get PDF
    Irregular Pagination MisnumberedFlexible Manufacturing Systems (FMS) appeared upon the manufacturing scene in the early 1970s, installations presently number in the thousands. However, many current installations in fact lack flexibility, do not operate in real-time and are prohibitively expensive. Therefore there are obvious benefits to be gained from making improvements to existing flexible manufacturing systems. Research conducted for this thesis focused on two major areas. The implementation of the FMS control system on a SCADA package and the development of an auction based scheduling system. This entailed the development of a hybrid control model composed of three distinct layers; factory, cell and intelligent entity. Key portions of both the factory and cell controllers were then implemented so as to create a minimal system. This has been completed to the point where the auction algorithm has been implemented and tested in an appropriate framework. In achieving the goals mentioned above a number of novel design concepts have been utilised. There are two which are most important, these are the use of low cost modules for the construction of a flexible co-operative manufacturing system, and the ability of this system to operate in a physically distributed area via a Local Area Network. Meaning it is inherently adaptable and resistant to failure. These novel design concepts were ingrained throughout the entire three layered control model. It is felt that this research has succeeded in demonstrating the possibility of implementing a FMS control system on a low cost SCADA package using low cost software and computing elements. The ability of the distributed, auction-based approach to operate successfully within this system, has also been demonstrated through simulation

    Hierarchical decomposition and simulation of manufacturing cells using Ada

    Full text link
    A useful tool in the development of flexible automation is a system description language which can generate a complete func tional description of a manufacturing cell of arbitrary complexity. We propose a description system based on the concept of hierar chical decomposition utilizing the Ada programming language in conjunction with established diagrammatical decomposition methods. The distinguishing aspect of our work is that it takes advantage of certain features of Ada (such as type checking) to create a description that can be automatically verified for con sistency Simulation is often an indispensable tool in the develop ment of manufacturing systems. We show how a simulation of the operation of the manufacturing cell can be embedded in its description. Finally, we apply the methodology to a specific instance of a manufacturing cell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68498/2/10.1177_003754978604600402.pd

    A genetic algorithm approach to designing and modelling of a multi-functional fractal manufacturing layout

    Get PDF
    A dynamic and optimal shop floor design, modelling and implementation is key to achieving successful Fractal Manufacturing System (FrMS). To build adaptive and fault-tolerant fractal layout, attention is paid to issues of shop floor planning, function layout, determination of capacity level, cell composition planning and flow distances of products. A full fledged FrMS. layout is multi-functional and is capable of producing a variety of products with minimal reconfiguration. This paper is part and a progression of an on-going project whereby Genetic Algorithm (GA) is adopted to design and model a flexible and multi-functional FrMS floor layout. GA is used in the project for modeling and simulation. The design implementation is done using MATLAB. The result is a fault tolerant configuration that self-regulates and adapts to unpredictable changes in the manufacturing environment arising from lead time reduction pressure, inventories, product customization and other challenges of a dynamic and volatile operational environment

    Tele-operation of a manufacturing system for vocational education

    Get PDF
    A flexible manufacturing system was designed and developed to become a decentralised modular network manufacturing plant in the Hong Kong Institute of Vocational Education (Chai Wan). The system consists of a flexible machining cell, flexible assembly cell, automatic storage system, a database server, web-server and video conferencing system which are to be linked by various networks internationally with other educational institutions or manufacturing sites. Various areas for the development such as system layout, simulation, mechanical design, hardware and software development have been carried out. The current development is to establish a web-based control and training system to the customers or students. They can view the operation of manufacturing and assembly processes as well as access system data and information globally. The aim of this paper is to report the tele-control development of the flexible manufacturing system. The development changes the current education process. The system provides virtual and animated images on design, manufacturing attributes and supports remote training. Students, at a distant location can acquire skills, production methods and access system data and information globally. Moreover, instant feedback from students is possible, as they can make criticism at any geographical area. Delivery of knowledge can now be on-line and in real time globally to achieve better result of education. Students using this system can communicate with the system host using Internet or ISDN leased line directly. They can submit task on various manufacturing processes and control of industrial robots through Internet or intranet. Host’s feedback to students is also provided in order to enhance the learning process

    An SDS Modeling Approach for Simulation-Based Control

    Get PDF
    We initiate a study of mathematical models for specifying (discrete) simulation-based control systems. It is desirable to specify simulation-based control systems using a model that is intuitive, succinct, expressive, and whose state space properties are relatively easy computationally. We compare automata-based models for specifying control systems and find that all systems that are currently used (such as finite state machines, communicating hierarchical finite state machines (FSM), communicating finite state machines, and Turing machines) lack at least one of the abovementioned features. We propose using sequential dynamical systems (SDS) - a formalism for representing discrete simulations - to specify simulation-based control systems. We show how to adapt the standard SDS model to specify cell-level controllers for a generic cell. For reasonable flexible manufacturing cells, the SDS-based specification has size polynomial in the size of the cell, while in the worst case the FSM-based specification has size exponential in the size of the cell
    corecore