6,296 research outputs found

    The effect of real workloads and stochastic workloads on the performance of allocation and scheduling algorithms in 2D mesh multicomputers

    Get PDF
    The performance of the existing non-contiguous processor allocation strategies has been traditionally carried out by means of simulation based on a stochastic workload model to generate a stream of incoming jobs. To validate the performance of the existing algorithms, there has been a need to evaluate the algorithms' performance based on a real workload trace. In this paper, we evaluate the performance of several well-known processor allocation and job scheduling strategies based on a real workload trace and compare the results against those obtained from using a stochastic workload. Our results reveal that the conclusions reached on the relative performance merits of the allocation strategies when a real workload trace is used are in general compatible with those obtained when a stochastic workload is used

    zCap: a zero configuration adaptive paging and mobility management mechanism

    Get PDF
    Today, cellular networks rely on fixed collections of cells (tracking areas) for user equipment localisation. Locating users within these areas involves broadcast search (paging), which consumes radio bandwidth but reduces the user equipment signalling required for mobility management. Tracking areas are today manually configured, hard to adapt to local mobility and influence the load on several key resources in the network. We propose a decentralised and self-adaptive approach to mobility management based on a probabilistic model of local mobility. By estimating the parameters of this model from observations of user mobility collected online, we obtain a dynamic model from which we construct local neighbourhoods of cells where we are most likely to locate user equipment. We propose to replace the static tracking areas of current systems with neighbourhoods local to each cell. The model is also used to derive a multi-phase paging scheme, where the division of neighbourhood cells into consecutive phases balances response times and paging cost. The complete mechanism requires no manual tracking area configuration and performs localisation efficiently in terms of signalling and response times. Detailed simulations show that significant potential gains in localisation effi- ciency are possible while eliminating manual configuration of mobility management parameters. Variants of the proposal can be implemented within current (LTE) standards

    An efficient processor allocation strategy that maintains a high degree of contiguity among processors in 2D mesh connected multicomputers

    Get PDF
    Two strategies are used for the allocation of jobs to processors connected by mesh topologies: contiguous allocation and non-contiguous allocation. In non-contiguous allocation, a job request can be split into smaller parts that are allocated to non-adjacent free sub-meshes rather than always waiting until a single sub-mesh of the requested size and shape is available. Lifting the contiguity condition is expected to reduce processor fragmentation and increase system utilization. However, the distances traversed by messages can be long, and as a result the communication overhead, especially contention, is increased. The extra communication overhead depends on how the allocation request is partitioned and assigned to free sub-meshes. This paper presents a new Non-contiguous allocation algorithm, referred to as Greedy-Available-Busy-List (GABL for short), which can decrease the communication overhead among processors allocated to a given job. The simulation results show that the new strategy can reduce the communication overhead and substantially improve performance in terms of parameters such as job turnaround time and system utilization. Moreover, the results reveal that the Shortest-Service-Demand-First (SSD) scheduling strategy is much better than the First-Come-First-Served (FCFS) scheduling strategy

    Solutions for IPv6-based mobility in the EU project MobyDick

    Get PDF
    Proceedings of the WTC 2002, 18th World Telecommunications Congress, Paris, France, 22 -27 September, 2002.Mobile Internet technology is moving towards a packet-based or, more precisely, IPv6-based network. Current solutions on Mobile IPv6 and other related QoS and AAA matters do not offer the security and quality users have come to take for granted. The EU IST project Moby Dick has taken on the challenge of providing a solution that integrates QoS, mobility and AAA in a heterogeneous access environment. This paper focuses on the mobility part of the project, describes and justifies the handover approach taken, shows how QoS-aware and secure handover is achieved, and introduces the project's paging concept. It shows that a transition to a fully integrated IP-RAN and IP-Backbone has become a distinct option for the future.Publicad
    • 

    corecore