32,149 research outputs found

    Hamiltonian and Phase-Space Representation of Spatial Solitons

    Full text link
    We use Hamiltonian ray tracing and phase-space representation to describe the propagation of a single spatial soliton and soliton collisions in a Kerr nonlinear medium. Hamiltonian ray tracing is applied using the iterative nonlinear beam propagation method, which allows taking both wave effects and Kerr nonlinearity into consideration. Energy evolution within a single spatial soliton and the exchange of energy when two solitons collide are interpreted intuitively by ray trajectories and geometrical shearing of the Wigner distribution functions.Comment: 12 pages, 5 figure

    Effects of virtual acoustics on dynamic auditory distance perception

    Get PDF
    Sound propagation encompasses various acoustic phenomena including reverberation. Current virtual acoustic methods, ranging from parametric filters to physically-accurate solvers, can simulate reverberation with varying degrees of fidelity. We investigate the effects of reverberant sounds generated using different propagation algorithms on acoustic distance perception, i.e., how faraway humans perceive a sound source. In particular, we evaluate two classes of methods for real-time sound propagation in dynamic scenes based on parametric filters and ray tracing. Our study shows that the more accurate method shows less distance compression as compared to the approximate, filter-based method. This suggests that accurate reverberation in VR results in a better reproduction of acoustic distances. We also quantify the levels of distance compression introduced by different propagation methods in a virtual environment.Comment: 8 Pages, 7 figure

    Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast

    Get PDF
    Ultrasound Tomography has seen a revival of interest in the past decade, especially for breast imaging, due to improvements in both ultrasound and computing hardware. In particular, three-dimensional ultrasound tomography, a fully tomographic method in which the medium to be imaged is surrounded by ultrasound transducers, has become feasible. In this paper, a comprehensive derivation and study of a robust framework for large-scale bent-ray ultrasound tomography in 3D for a hemispherical detector array is presented. Two ray-tracing approaches are derived and compared. More significantly, the problem of linking the rays between emitters and receivers, which is challenging in 3D due to the high number of degrees of freedom for the trajectory of rays, is analysed both as a minimisation and as a root-finding problem. The ray-linking problem is parameterised for a convex detection surface and three robust, accurate, and efficient ray-linking algorithms are formulated and demonstrated. To stabilise these methods, novel adaptive-smoothing approaches are proposed that control the conditioning of the update matrices to ensure accurate linking. The nonlinear UST problem of estimating the sound speed was recast as a series of linearised subproblems, each solved using the above algorithms and within a steepest descent scheme. The whole imaging algorithm was demonstrated to be robust and accurate on realistic data simulated using a full-wave acoustic model and an anatomical breast phantom, and incorporating the errors due to time-of-flight picking that would be present with measured data. This method can used to provide a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to being useful in their own right, such 3D sound speed maps can be used to initialise full-wave inversion methods, or as an input to photoacoustic tomography reconstructions

    AROMA: Automatic Generation of Radio Maps for Localization Systems

    Full text link
    WLAN localization has become an active research field recently. Due to the wide WLAN deployment, WLAN localization provides ubiquitous coverage and adds to the value of the wireless network by providing the location of its users without using any additional hardware. However, WLAN localization systems usually require constructing a radio map, which is a major barrier of WLAN localization systems' deployment. The radio map stores information about the signal strength from different signal strength streams at selected locations in the site of interest. Typical construction of a radio map involves measurements and calibrations making it a tedious and time-consuming operation. In this paper, we present the AROMA system that automatically constructs accurate active and passive radio maps for both device-based and device-free WLAN localization systems. AROMA has three main goals: high accuracy, low computational requirements, and minimum user overhead. To achieve high accuracy, AROMA uses 3D ray tracing enhanced with the uniform theory of diffraction (UTD) to model the electric field behavior and the human shadowing effect. AROMA also automates a number of routine tasks, such as importing building models and automatic sampling of the area of interest, to reduce the user's overhead. Finally, AROMA uses a number of optimization techniques to reduce the computational requirements. We present our system architecture and describe the details of its different components that allow AROMA to achieve its goals. We evaluate AROMA in two different testbeds. Our experiments show that the predicted signal strength differs from the measurements by a maximum average absolute error of 3.18 dBm achieving a maximum localization error of 2.44m for both the device-based and device-free cases.Comment: 14 pages, 17 figure

    Modeling the Effect of Oceanic Internal Waves on the Accuracy of Multibeam Echosounders

    Get PDF
    When ray bending corrections are applied to multibeam echosounder (MBES) data, it is assumed that the varying layers of sound speed lie along horizontally stratified planes. In many areas internal waves occur at the interface where the water’s density changes abruptly (a pycnocline), this density gradient is often associated with a strong gradient in sound speed (a velocline). The internal wave introduces uncertainty into the echo soundings through two mechanisms: (1) tilting of the velocline, and (2) vertical oscillation of the velocline’s depth. A model has been constructed in order to examine how these effects degrade the accuracy of MBES measurements. The model numerically simulates the 3D ray paths of MBES soundings for a synthetic flat seafloor, as though the soundings have been collected through a user-defined internal wave. Along with sound speed information, the ray paths are used to estimate travel times which are then utilized as inputs for a conventional 2D ray trace. The discrepancy between the 3D and 2D ray traced solutions serve as an estimate of uncertainty. The same software can be extended to model the expected anomalies associated with tidal fronts and other phenomena that result in significant tilting or oscillation of the velocline. A case study was undertaken using observed internal wave parameters on the Scotian Shelf. The case study examines how survey design parameters such as line spacing, direction of survey lines, and water column sampling density can influence the uncertainty introduced by internal waves. In particular, an examination is undertaken in which 2D ray tracing models are augmented with MBES water column imaging of the velocline. The investigation shows that internal waves have the potential to cause vertical uncertainties exceeding IHO standards and that the uncertainty can potentially be mitigated through appropriate survey design. Results from the case study also indicate that acoustic tracking of the velocline has the potential to counteract the effects of internal waves through augmentation of 2D ray tracing models. This technique is promising, however, much more research and field testing is required to ascertain the practicality, reliability and repeatability of such an approach

    Modelling Uncertainty Caused by Internal Waves on the Accuracy of MBES

    Get PDF
    A 3D ray tracing model has been developed to estimate the effects of internal waves upon the accuracy of multibeam echosounders (MBES). A case study examines the variability in these effects as a function of survey line direction and also considers the case of improving 2D ray tracing models with wave parameters derived from MBES water column imagery. Results indicate that, under certain circumstances, the effects of internal waves can prove to be a significant source of uncertainty that detracts from the ability to efficiently map the seafloor with wide swath angles

    The Effects of Neighboring Buildings on the Indoor Wireless Channel at 2.4 and 5.8 GHz

    Get PDF
    The effects of neighboring buildings (NBs) on the indoor wireless channel are examined both in time and space domain at 2.4 GHz and 5.8 GHz band using the computer simulation of radio wave propagation based on ray-tracing technique. The NBs in the apartment environments have a considerable effect on the channel characteristics, such as the exponents of path loss, mean excess delay, rms delay spread time, coherence bandwidth, and angle dispersion of received rays. Also the effects are shown to be different according to the frequency band
    corecore