594 research outputs found

    ME-EM 2004 Annual Report

    Get PDF
    Table of Contents Overview Mission, Vision, and Strategic Plan Enrollment and Expenditure Data Faculty & Staff Industrial Advisory Committee Students Academic Programs Alumni Donations Contracts & Grants Graduates Publicationshttps://digitalcommons.mtu.edu/mechanical-annualreports/1014/thumbnail.jp

    ACADEMIC HANDBOOK (UNDERGRADUATE) COLLEGE OF ENGINEERING (CoE)

    Get PDF

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    11th Annual Undergraduate Research Symposium

    Get PDF

    A study of behavioural, cognitive and neural markers underlying visuospatial learning

    Get PDF
    Visuospatial (VS) learning is an education format noted for encouraging an individual to use visual exploration and their innate spatial ability in constructing a flexible ‘internal mental representation’ of three-dimensional information. Being a discipline reliant upon this informed consideration, VS methods have found particular application in anatomy education – with tangential evidence linking the inclusion of these methods to greater student understanding of anatomical concepts. Building on these findings, this thesis investigates: (i) the extent of individual and group learning benefits that accompany VS instruction within anatomy education, and (ii) a novel exploration of the cognitive and neuroscientific mechanisms that govern their success. To chart the success of instructional methodology in our reporting, we selected an array of academic performance and accompanying engagement indices. These items had been expressed by numerous modestly-powered prior studies, encompassing a diversity of anatomy cohorts, to be heightened under VS learning. Our initial work in Chapter 2 was therefore to determine if these effects were preserved when VS instruction was introduced within a substantially larger undergraduate anatomy cohort. Findings substantiated the wider applicability of this teaching method, with academic scores in each of the examined categories (didactic, spatial, and extrapolation) being superior to standard course delivery. Conflictingly, lower engagement and desire for VS inclusion was noted in the group receiving this instruction – leading us to attribute this to prevailing misconceptions about the nature of VS learning. In order to determine whether benefits found to characterise VS teaching in anatomy were universally applicable, or attributable to a myriad of demographic and cognitive factors, Chapter 3 explored variation in individual spatial capacity. Interestingly, the prevailing advantage of raw spatial aptitude in males was not associated with improved practical performance. This subsequently allowed a component of underlying psychological reasoning, namely visualisation (Vz) ability, to be highlighted as the clearest indicator of one’s ability to transfer raw spatial intelligence into practical VS understanding. Accompanying the misconceptions of VS learning reported in Chapter 2, participants were found to be poor estimators of their VS ability. Having established that spatial reasoning in anatomy possesses a physiological basis, we conducted a novel exploration of the neuroscientific mechanism evoked in VS learning using electroencephalography (EEG) technology (Chapter 4). This was evaluated by monitoring the neural signals of individuals engaged in two anatomical education workshops (featuring standard or VS instruction). No significant differences in oscillatory power accounted for the influence of VS instruction within any of the assessed frequency ranges (2-45Hz). Objective task outcomes were consistent with those in Chapter 2, finding a similarly elevated ability to address spatial questions following VS instruction. When placed together, the results of Chapters 2, 3 and 4 demonstrate the explicit advantages present for VS instruction in anatomy education. Though further work is required to isolate the specific underlying neural pathways, this appears linked to passive changes in how the human brain processes and later consolidates this information. Findings have important implications for advancing medical educational strategy (Appendix Descriptive Review), and wider understanding of the mechanisms that govern learning.Thesis (Ph.D.) -- University of Adelaide, Adelaide Medical School, 202
    • …
    corecore