1,323 research outputs found

    Multi-agent quality of experience control

    Get PDF
    In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper shows that such an approach offers the opportunity to cope with some practical implementation problems: in particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory performance results even in the presence of several hundreds of Agents

    Multimedia Traffic over Wireless and Satellite Networks

    Get PDF

    Intelligent Algorithm for Enhancing MPEG-DASH QoE in eMBMS

    Full text link
    [EN] Multimedia streaming is the most demanding and bandwidth hungry application in today¿s world of Internet. MPEG-DASH as a video technology standard is designed for delivering live or on-demand streams in Internet to deliver best quality content with the fewest dropouts and least possible buffering. Hybrid architecture of DASH and eMBMS has attracted a great attention from the telecommunication industry and multimedia services. It is deployed in response to the immense demand in multimedia traffic. However, handover and limited available resources of the system affected on dropping segments of the adaptive video streaming in eMBMS and it creates an adverse impact on Quality of Experience (QoE), which is creating trouble for service providers and network providers towards delivering the service. In this paper, we derive a case study in eMBMS to approach to provide test measures evaluating MPEG-DASH QoE, by defining the metrics are influenced on QoE in eMBMS such as bandwidth and packet loss then we observe the objective metrics like stalling (number, duration and place), buffer length and accumulative video time. Moreover, we build a smart algorithm to predict rate of segments are lost in multicast adaptive video streaming. The algorithm deploys an estimation decision regards how to recover the lost segments. According to the obtained results based on our proposal algorithm, rate of lost segments is highly decreased by comparing to the traditional approach of MPEG-DASH multicast and unicast for high number of users.This work has been partially supported by the Postdoctoral Scholarship Contratos Postdoctorales UPV 2014 (PAID-10-14) of the Universitat Politècnica de València , by the Programa para la Formación de Personal Investigador (FPI-2015-S2-884) of the Universitat Politècnica de València , by the Ministerio de Economía y Competitividad , through the Convocatoria 2014. Proyectos I+D - Programa Estatal de Investigación Científica y Técnica de Excelencia in the Subprograma Estatal de Generación de Conocimiento , project TIN2014-57991-C3-1-P and through the Convocatoria 2017 - Proyectos I+D+I - Programa Estatal de Investigación, Desarrollo e Innovación, convocatoria excelencia (Project TIN2017-84802-C2-1-P).Abdullah, MT.; Jimenez, JM.; Canovas Solbes, A.; Lloret, J. (2017). Intelligent Algorithm for Enhancing MPEG-DASH QoE in eMBMS. Network Protocols and Algorithms. 9(3-4):94-114. https://doi.org/10.5296/npa.v9i3-4.12573S9411493-

    QoS in LEO satellite networks with multipacket reception

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaLow Earth Orbit (LEO) satellite networks can improve terrestrial wireless networks to allow global broadband services for Mobile Terminals (MT), regardless of the users' location. In this context, hybrid telecommunication systems combining satellites with Long Term Evolution (LTE) networks, like the LightSquared technology, are intended to provide ubiquitous high-speed services. This dissertation analyses the performance of a random access protocol that uses Hybrid Network-assisted Diversity Multiple Access (H-NDMA), for a LEO satellite system network, named by Satellite Random NDMA (SR-NDMA). The protocol also considers a Single Carrier-Frequency Domain Equalization (SC-FDE) scheme for the uplink transmission and a Multipacket Reception (MPR) receiver. In this scenario, the transmission of data packets between MTs and the Base Station (BS) is made through random access and schedule access slots, organized into super-frames with the duration of a Round Trip Time (RTT). A SR-NDMA simulator is implemented to measure the system performance in matters of throughput, energy consumption, system delay and also the protocol capacity to meet Quality of Service (QoS) requirements. A set of simulations tests were made with a random Poisson process tra c generation to validate the analytical model. The capacity to ful l the QoS requirements of a real-time tra c class was also tested.FCT/MEC: MPSat - PTDC/EEA-TEL/099074/2008, OPPORTUNISTIC CR - PTDC/EEA-TEL/115981/2009, Femtocells - PTDC/EEA-TEL/120666/2010 e ADIN - PTDC/EEI-TEL/2990/201

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)
    corecore