14 research outputs found

    Forecasting for Nonlinear and Nonstationary Systems Using Intrinsic Functional Decomposition Models

    Get PDF
    The purpose of this study is to develop nonlinear and nonstationary time series forecasting methods to address modeling and prediction of real-world, complex systems. Particular emphasis has been placed on nonlinear and nonstationary time series forecasting in systems and processes that are of interest to IE researchers. Two new advanced prediction methods are developed using nonlinear decomposition techniques and a battery of advanced statistical methods. The research methodologies include empirical mode decomposition (EMD)-based prediction, structural relationship identification (SRI) methodology, and intrinsic time-scale decomposition (ITD)-based prediction. The advantages of using these prediction methods are local characteristic time scales and the use of an adaptive basis that does not require a parametric functional form (during the decomposition process). The utilization of SRI methodology in ITD-based prediction also provides a relationship identification advantage that can be used to capture the interrelationships of variables in the system for prediction application. The empirical results of using these new prediction methods have shown a significant improvement in the accuracy for customer willingness-to-pay and automobile demand prediction applications.Industrial Engineering & Managemen

    Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    Get PDF
    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Dynamics of Neural Systems: From Intracellular Transport in Neurons to Network Activity

    Full text link
    Neurodegenerative diseases such as Alzheimer’s disease (AD) are all results of neurons losing their normal functionality. However, the exact mechanics of neurodegeneration remains obscure. Most of the knowledge about this class of diseases is obtained by studying late stage patients. Therefore, the mechanism proceeding the late stages of such diseases are less understood. Better understanding of respective mechanisms can help developing in early diagnostic tools and techniques to enable more effective treatment methods. Analyzing the dynamics of neural systems can be the key to discover the underlying mechanisms, which lead to neurodegenerative diseases. The dynamics of neural systems can be studied in different scales. At subcellular level, dynamics of axonal transport plays an important role in AD. In particular, anterograde axonal transport conducted by kinesin-1, known conventionally as kinesin, is essential for maintaining functional synapses. The stochastic motion of kinesin in the presence of magnetic nanoparticles is studied. A novel reduced-order-model (ROM) is constructed to simulate the collective dynamics of magnetic nanoparticles that are delivered into cells. The ROM coupled with the kinesin model allows the quantification of the decrease in processivity of kinesin and in its average velocity under external loads caused by chains of magnetic nanoparticles. Changes in the properties of transport induced by perturbations have the potential to decipher normal transport from impaired transport in the state of disease. In single-cell level analysis, Ca2+ transients in ASH neuron of C. elegans model organism is studied in the context of biological conditions such as aging and oxidative stress. A novel mathematical model is established that can describe the unique Ca2+ transients of ASH neuron in C. elegans including its “on” and “off” response. The model provides insight into the mechanism that governs the observed Ca2+ dynamics in ASH neuron. Hence, the proposed mathematical model can be utilized as a tool that offers explanation for changes induced by aging or oxidative stress in the neuron based on the observed Ca2+ dynamics. Network level analysis of neurons does not require methods of extremely high spatial and temporal resolution compared to the analysis in subcellular and cellular level. Yet, malfunction in smaller scales can manifest themselves in dynamics of larger scales. In particular, impairment of synaptic connections and their dynamics can jeopardize the normal functionality of the brain in pathological conditions such as AD. The impact of synaptic deficiencies is investigated on robustness of persistence activity (essential for working memory, which is adversely affected by AD) in excitatory networks with different topologies. Networks with rich-clubs are shown to have higher robustness when their synapses are impaired. Hence, monitoring changes in the properties of the neural network can be utilized as a tool to detect defects in synaptic connections. Moreover, such defects are shown to be more devastating if they occur in synapses of highly active neurons. Impairments of synapses in highly active neurons can be directly linked to subcellular processes such as depletion of synaptic resources. Using stochastic firing rate models, the parameters that govern synaptic dynamics are shown to influence the capability of the model to possess memory. The decrease in the release probability of synaptic vesicles, which can be caused by loss of axonal transport, is shown to have a detrimental effect on memory represented by the firing rate of population models.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145921/1/mirzakh_1.pd

    Magnetic-moment measurements by the transient-field and recoil-in-vacuum techniques in fpg-shell nuclei

    Get PDF
    Picosecond-lifetime nuclear-state g factors are challenging to measure, with the transient-field (TF) and recoil-in-vacuum (RIV) techniques best able to probe them. The TF is experienced by a swift ion traversing a polarised ferromagnetic material, while RIV relies on hyperfine interactions between the nucleus and its electrons that occur in isolated ions. Both techniques often require independent calibration, a key limitation in their use. The objective of this thesis is to improve the precision of g-factor measurements with these techniques. This was achieved by developing procedures that minimise systematic uncertainty in TF measurements to obtain reliable relative g factors, and then scaling them by developing atomic-structure calculations that enabled absolute g factors to be determined from RIV measurements focused on Na-like ions. Relative TF measurements were used to determine the first-excited-state g-factor ratio between Mg-24 and Mg-26, which was then scaled using a literature value of g(Mg-24), obtained using RIV, to determine g(Mg-26). TF measurements were also performed to obtain first-excited-state g-factor ratios between the stable even-A isotopes of Ge and Se, with the first-ever simultaneous measurement performed on isobaric nuclides (Ge-74, Se-74) in a cocktail beam. An ab initio approach to modelling Fe-56 first-excited-state time-differential RIV data focused on Na-like ions was developed. Time-differential Ge-76 and time-integral Fe-54,56 first-excited-state data were also analysed. The analysis utilised a Monte-Carlo simulation of atomic decays to model the hyperfine interaction through time. The combined use of relative TF and calibration-independent RIV measurements allowed the determination of precise absolute g-factor values. These were used to interrogate TF-strength calibrations, and shell-model predictions. Together, TF and RIV procedures presented in this work were effective in determining accurate g-factor values with improved precision in picosecond-lifetime nuclear states

    Trace element partioning between coexisting metamorphic minerals and trace element zoning in metamorphic minerals from Gagnon Terrane, Western Labrador

    Get PDF
    Because of their wide-range in chemical properties, trace element partitioning and zoning in metamorphic systems provides valuable information on various metamorphic processes which are not recorded or preserved by major elements. Trace element partitioning between coexisting minerals and major and trace element zoning patterns were investigated using an electron microprobe and a laser ablation microprobe - inductively coupled plasma - mass spectrometry for pelites in Gagnon terrane, western Labrador. -- Large variations in the partitioning of Sc and Cr between coexisting garnet and biotite indicate lost or modification of equilibrium compositions by garnet resorption and disquilibrium, respectively. Crystal lattice strain of garnet controls trace element partitioning, so that the distribution of elements occupying each cation site in the garnet structure shows parabolic relations with ionic radius. Sc and Ti partitioning are controlled by Al contents in biotite and Ca in garnet, respectively. Weak to moderate thermal dependence of Co, Zn and Zr partitioning maybe related to increases in thermal expansivities with metamorphic grade. -- Similar to garnet and biotite pairs, trace element partitioning between biotite and muscovite shows controls of crystal lattice strain. The distributions of Li, Sc, Sr and Ba show dependence on both temperature and major element compositions. V and Zr partitioning is moderately dependent on temperature. -- For garnets with spiral internal fabrics, growth zoning for some major and trace elements exhibits a spiral pattern (spiral zoning), implying that incorporation of these elements was mainly restricted to discrete growth regions of the crystal at any one time. Low amphibolite-facies garnets show Cr zoning parallel to foliation, indicating that the garnet overprinted a matrix fabric with a heterogeneous Cr distribution during growth (overprint zoning). In contrast, in mid/upper amphibolite-facies garnet porphyroblasts, Cr zoning becomes concentric, indicating an enhanced diffusion rate. -- Various Mn concentrations in the same annulus from garnet porphyroblasts in a thin-section suggests that Mn did not achieve thin-section scale equilibrium during the annulus formation, raising questions concerning the use of Mn concentration as a time marker. The origins of Y-annuli are suggested in this study: (1) Y-annuli produced by garnet resorption and regrowth characterized by an irregular and discontinuous annulus with a steeper slope on the inner side of the annulus, (2) Y-annuli produced by discontinuous breakdown of Y- and REE-rich minerals characterized by euhedral annuli and (3) Y-annuli produced by changes in garnet growth speed. Trace minerals responsible for the formation of Y-annuli are identified using REE ratios on small intervals on the annuli. -- Phosphorus and Y concentrations in garnet and apatite coexisting with apatite and xenotime, respectively, vary systematically with metamorphic grade. This study demonstrate that trace element zoning combined with partitioning data provides valuable information on P-T, reaction histories, scale of equilibrium and kinetics

    From Laboratory Studies to Court Evidence: Challenges in Forensic Entomology

    Get PDF
    In 2001, Benecke concluded a review on the history of forensic entomology with these optimistic words: "basic research and advanced application of forensic entomology (…) has opened the way to routine casework". At the same time, the TV show Crime Scene Investigation (CSI) largely brought forensic entomology to light. However, the show also cruelly pointed out its limits: After the team leader explained to his colleague how insects can help determine the time of death, the team leader added "You've still got to convince a jury", to which the colleague promptly responded "On guns. It's got to be better than bugs. Less Latin." Indeed, several factors—including complexity, inherent limitations, and the rapid evolution of scientific knowledge—explain the slow acceptance of insect-based evidence. In this context, this Special Issue focuses on the articulation between laboratory studies and casework, a major challenge for the future of forensic entomology
    corecore