12,840 research outputs found

    Simulation of beam induced lattice defects of diamond detectors using FLUKA

    Get PDF
    Diamond is more and more used as detector material for particle detection. One argument for diamond is its higher radiation hardness compared to silicon. Since various particles have different potential for radiation damage at different energies a scaling rule is necessary for the prediction of radiation damage. For silicon detectors the non-ionising energy loss (NIEL) is used for scaling the effects of different particles. A different way of predicting the radiation damage is based on the Norget-Robinson-Torrens theorem to predict the number of displacements per atom (DPA). This provides a better scaling rule since recombination effects are taken into account. This model is implemented in the FLUKA Monte Carlo simulations package for protons, neutrons and pions. We compare simulation results of NIEL and DPA for diamond and silicon material exposed to protons, neutrons and pions for a wide range of energies

    Geant4 Simulation of a filtered X-ray Source for Radiation Damage Studies

    Full text link
    Geant4 low energy extensions have been used to simulate the X-ray spectra of industrial X-ray tubes with filters for removing the uncertain low energy part of the spectrum in a controlled way. The results are compared with precisely measured X-ray spectra using a silicon drift detector. Furthermore, this paper shows how the different dose rates in silicon and silicon dioxide layers of an electronic device can be deduced from the simulations

    4-Dimensional Tracking with Ultra-Fast Silicon Detectors

    Full text link
    The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4-dimensional tracking. In the last section we present the experimental results, demonstrating the validity of our research path.Comment: 72 pages, 3 tables, 55 figure

    Lorentz angle measurements in irradiated silicon detectors between 77 K and 300 K

    Get PDF
    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures below 180 K. At low temperatures the mobility increases, which leads to larger deflections of the charge carriers by the Lorentz force. A good knowledge of the Lorentz angle is needed for design and operation of silicon detectors. We present measurements of the Lorentz angle between 77 K and 300 K before and after irradiation with a primary beam of 21 MeV protons.Comment: 13 pages, 9 figures, submitted to ICHEP2000, Osaka, Japa

    Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    Full text link
    Silicon pixel detectors are at the core of the current ATLAS detector and its planned upgrade. As the detectors in closest proximity to the interaction point, they will be exposed to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 101510^{15} 1 MeV neq/cm2n_\mathrm{eq}/\mathrm{cm}^2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic pixel cluster properties are presented alongside first validation studies with Run 2 collision data.Comment: 12 pages, 13 figures; Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. C17073

    Sensor Simulation and position calibration for the CMS pixel detector

    Full text link
    In this paper a detailed simulation of irradiated pixel sensors was used to investigate the effects of radiation damage on charge sharing and position determination. The simulation implements a model of radiation damage by including two defect levels with opposite charge states and trapping of charge carriers. We show that charge sharing functions extracted from the simulation can be parameterized as a function of the inter-pixel position and used to improve the position determination. For sensors irradiated to Phi=5.9x10^14 n/cm^2 a position resolution below 15 um can be achieved after calibration.Comment: Presented at the 14th Int. Workshop on Vertex Detectors (Vertex 2005), November 7-11 2005, Chuzenji Lake, Nikko, Japan. 4 pages, 1 figur

    An algorithm for calculating the Lorentz angle in silicon detectors

    Full text link
    Future experiments will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is affected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. In this paper measurements of the Lorentz angle of electrons and holes before and after irradiation are reviewed and compared with a simple algorithm to compute the Lorentz angle.Comment: 13 pages, 7 figures, final version accepted by NIMA. Mainly clarifications included and slightly shortene

    Simulation of Heavily Irradiated Silicon Pixel Sensors and Comparison with Test Beam Measurements

    Full text link
    Charge collection measurements performed on heavily irradiated p-spray DOFZ pixel sensors with a grazing angle hadron beam provide a sensitive determination of the electric field within the detectors. The data are compared with a complete charge transport simulation of the sensor which includes signal trapping and charge induction effects. A linearly varying electric field based upon the standard picture of a constant type-inverted effective doping density is inconsistent with the data. A two-trap double junction model implemented in the ISE TCAD software can be tuned to produce a doubly-peaked electric field which describes the data reasonably well. The modeled field differs somewhat from previous determinations based upon the transient current technique. The model can also account for the level of charge trapping observed in the data.Comment: 8 pages, 11 figures. Talk presented at the 2004 IEEE Nuclear Science Symposium, October 18-21, Rome, Italy. Submitted to IEEE Transactions on Nuclear Scienc
    • …
    corecore