1,609 research outputs found

    UNIFIED MODELLING TECHNIQUE USING VHDL-AMS AND SOFTWARE COMPONENTS

    Get PDF
    International audienceThe paper deals with the dynamic modeling of mechatronic devices, which usually need detailed modeling to be described and to take into account the physical properties of the system. VHDL-AMS 1 , which is a powerful unified modeling language for mixed system, allows to describe a large range of physical systems, for their dynamic simulation. It allows to describe models of physical components and then to connect them to obtain the model of a system.. However, this language cannot support the description of some physical phenomena, such local ones, defined by numerical methods (e.g.: finite element method, special numerical integrals). When an aspect of a model cannot be described in VHDL-AMS, the paper proposes to use software components. So, the aim of the paper is to propose a generic way to extend the computation capability of VHDL-AMS, by coupling the models described in VHDL-AMS with external ones specified as software components (where VHDL-AMS fails). The approach has been applied on several applications, among them the time simulation of an electrical plunge

    Wireless sensor networks for active vibration control in automobile structures

    Get PDF
    International audienceWireless Sensor Network (WSN) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using Wireless Sensor Networks in active vibration control strategy. The active control method used is an active-structural acoustic control using piezoelectric sensors distributed on the car structure. This system aims at being merged in wireless sensor network whose head node collects data and process control law so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSN in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best Wireless Sensor Network platform and the resulting impact on control

    Mechatronic Tools for the Modeling and Design of Servo Motor Actuated Belt Driven Motion Systems

    Get PDF
    Mechatronics is defined as the synergistic integration of physical systems, electronics, controls, and computers through the design process, from the very start of the design process, thus enabling complex decision making. This definition reveals the elements involved yet it eludes to the complexity and the constant balance of tradeoffs which are prevalent in the context of applying Mechatronics to a successful design process. This work pursues the use of various tools for the application of Mechatronics to the modeling and design of a servo motor driven motion system. The use of Mechatronics is pervasive in and among today\u27s highly integrated devices and systems. By virtue of the fact that the phrase Mechatronics may carry different meaning depending upon ones discipline or industry, the most general definition is sought and embodied within the work. An overview of the relevant discipline specific perspectives is offered; as sufficient background for the systems modeling and analysis presented. In the course of developing and applying a Mechatronics design process for servo motor actuated motion systems, the use of frequency response analysis and alternative modeling techniques is emphasized, not only as a tool for understanding and applying the matter but, also for the purposes of model verification. These efforts culminate in the design and testing of a physical realization of one of the models presented; the servo motor actuated compliant belt system with compliance and friction. The results of this work underscore the notion that using a Mechatronics design process while devising a servo motor driven motion system enables optimization and functionality not otherwise realizable. These results are supported with experimental verification and comparison. The implications of this work are threefold: the work equips the Mechatronics practitioner with the tools required for verification of the results of modeling and analysis, the work provides an upgrade to the tools and equipment available in the College of Engineering at Marquette University, and the work will likely inspire additional related projects

    Hybrid modeling and control of mechatronic systems using a piecewise affine dynamics approach

    Get PDF
    This thesis investigates the topic of modeling and control of PWA systems based on two experimental cases of an electrical and hydraulic nature with varying complexity that were also built, instrumented and evaluated. A full-order model has been created for both systems, including all dominant system dynamics and non-linearities. The unknown parameters and characteristics have been identi ed via an extensive parameter identi cation. In the following, the non-linear characteristics are linearized at several points, resulting in PWA models for each respective setup. Regarding the closed loop control of the generated models and corresponding experimental setups, a linear control structure comprised of integral error, feed-forward and state-feedback control has been used. Additionally, the hydraulic setup has been controlled in an autonomous hybrid position/force control mode, resulting in a switched system with each mode's dynamics being de ned by the previously derived PWA-based model in combination with the control structure and respective mode-dependent controller gains. The autonomous switch between control modes has been de ned by a switching event capable of consistently switching between modes in a deterministic manner despite the noise-a icted measurements. Several methods were used to obtain suitable controller gains, including optimization routines and pole placement. Validation of the system's fast and accurate response was obtained through simulations and experimental evaluation. The controlled system's local stability was proven for regions in state-space associated with operational points by using pole-zero analysis. The stability of the hybrid control approach was proven by using multiple Lyapunov functions for the investigated test scenarios.publishedVersio

    A Proposed Approach to Mechatronics Design and Implementation Education-Oriented Methodology

    Get PDF
    Mechatronics engineer is expected to design engineering systems with synergy and integration toward constrains like higher performance, speed, precision, efficiency, lower costs and functionality. The key element in success of a mechatronics engineering education-program, and correspondingly, Mechatronics engineering graduates, is directly related to a well-structured mechatronic system design course and the applied structural design methodology. Guidelines for structural design methodology and tools for the development process of mechatronic products, that can be applied in educational process is highly required. This paper proposes mechatronics systems design education-oriented methodology, which aims to integrate multidisciplinary knowledge, in various stages through the design process and development of mechatronics product. The proposed mechatronics design methodology is described, discussed and applied with the help of example student final year graduation project; design and implementation of mechatronics mobile robotic guidance system in the from of smart wheelchair- Mechatronics Motawif, to help and support people with disabilities and special needs to perform specific predetermined tasks, particularly, performing Al Omrah and motion around holy Kaba, Makka. Keywords: Mechatronics, Design methodology, Parallel design, Synergistic integration, Modeling/ Simulation, Prototyping, Mobile robot, Motawif

    Virtual Commissioning for Industrial Automation

    Get PDF
    A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree Master of Science by Saihiranmitra Mudiki on November 7, 2017

    Mechatronics Design Process with Energy Optimization for Industrial Machines

    Get PDF
    The need for designing industrial machines with higher energy efficiency, reliability, flexibility, and accuracy has increased to satisfy market demand for higher productivity at reduced costs in a sustainable manner. As machines become more complex, model-based design is essential to overcome the challenges in mechatronic system design. However, a well-designed mechanical system with a well-designed and tuned control system are not sufficient for machines to operate at high-performance conditions; this also heavily depends on trajectory planning and the appropriate selection of the motors controlling the axes of the machine. In this work, a model-based design approach to properly select motors for single-axes or multi-axes coordinated systems was proposed. Additionally, a trajectory planning approach was also proposed to improve performance of industrial machines. The proposed motor selection process and trajectory planning approach were demonstrated via modeling, simulation, and experimental validation for three systems: two-inertia system, planar robot, and self-balancing transporter. Over 25% of the electric energy delivered in the U.S. in 2013 was used in the industrial sector according to the U.S. Energy Information Administration, with an estimated efficiency of 80% according to the Lawrence Livermore National Laboratory. This entails major responsibility by the industry to utilize energy efficiently and promote sustainable energy usage. To help improve the energy efficiency in the industrial sector, a novel method to optimize the energy of single-axis and multi-axis coordinated systems of industrial machines was developed. Based on trajectory boundaries and the kinetic model of the mechanism and motors, this proposed energy optimization method performs iterations to recalculate the shape of the motion profile for each motor of the system being optimized until it converges to a motion profile with optimal energy cost and within these boundaries. This method was validated by comparing the energy consumption of those three systems while commanded by the optimized motion profile and then by motion profiles typically used in industrial applications. The energy saved was between 5% and 10%. The implementation cost of this method in industrial systems resides in machine-code changes; no physical changes are needed

    Computer-controlled autonomous model car: A mechatronics project

    Get PDF
    Mechatronics is a synthesis of mechanical engineering and electronic engineering, and computer engineering, distinct areas that overlap in the design of systems. It represents the interdisciplinary nature of design and development of today\u27s products.;The current research focuses on the design, construction and testing of a computer controlled autonomous model car which can exhibit intelligent behavior such as timed course execution, obstacle detection, and response to sensor inputs. The car is intended as a mechatronics design project that will be integrated into an existing one-semester mechanical engineering undergraduate instrumentation course.;The car was designed around a microprocessor board (Tern Analog Drive) controlled by a 16-bit microcontroller (Tern V104) and equipped with several sensor channels. Two stepper motors were used to propel and guide the car. Photocells were used to detect the path. The control program was written in Turbo C.;The car was tested on a path of reflective white tape about 2 inches wide. The path consists of a 36-inch straight portion followed by a 17-inch radius of curvature curved portion, and completed by a 6-inch straight section with an obstacle at the end. The autonomous car successfully traversed the path and stopped when it detected the obstacle.;It was concluded that a successful mechatronic design project could be developed around the construction and testing of an autonomous car
    • …
    corecore