146 research outputs found

    Spectral Super-Resolution of Satellite Imagery with Generative Adversarial Networks

    Get PDF
    Hyperspectral (HS) data is the most accurate interpretation of surface as it provides fine spectral information with hundreds of narrow contiguous bands as compared to multispectral (MS) data whose bands cover bigger wavelength portions of the electromagnetic spectrum. This difference is noticeable in applications such as agriculture, geosciences, astronomy, etc. However, HS sensors lack on earth observing spacecraft due to its high cost. In this study, we propose a novel loss function for generative adversarial networks as a spectral-oriented and general-purpose solution to spectral super-resolution of satellite imagery. The proposed architecture learns mapping from MS to HS data, generating nearly 20x more bands than the given input. We show that we outperform the state-of-the-art methods by visual interpretation and statistical metrics.Les dades hiperspectrals (HS) són la interpretació més precisa de la superfície, ja que proporciona informació espectral fina amb centenars de bandes contigües estretes en comparació amb les dades multiespectrals (MS) les bandes cobreixen parts de longitud d'ona més grans de l'espectre electromagnètic. Aquesta diferència és notable en àmbits com l'agricultura, les geociències, l'astronomia, etc. No obstant això, els sensors HS manquen als satèl·lits d'observació terrestre a causa del seu elevat cost. En aquest estudi proposem una nova funció de cost per a Generative Adversarial Networks com a solució orientada a l'espectre i de propòsit general per la superresolució espectral d'imatges de satèl·lit. L'arquitectura proposada aprèn el mapatge de dades MS a HS, generant gairebé 20x més bandes que l'entrada donada. Mostrem que superem els mètodes state-of-the-art mitjançant la interpretació visual i les mètriques estadístiques.Los datos hiperspectral (HS) son la interpretación más precisa de la superficie, ya que proporciona información espectral fina con cientos de bandas contiguas estrechas en comparación con los datos multiespectrales (MS) cuyas bandas cubren partes de longitud de onda más grandes del espectro electromagnético. Esta diferencia es notable en ámbitos como la agricultura, las geociencias, la astronomía, etc. Sin embargo, los sensores HS escasean en los satélites de observación terrestre debido a su elevado coste. En este estudio proponemos una nueva función de coste para Generative Adversarial Networks como solución orientada al espectro y de propósito general para la super-resolución espectral de imágenes de satélite. La arquitectura propuesta aprende el mapeo de datos MS a HS, generando casi 20x más bandas que la entrada dada. Mostramos que superamos los métodos state-of-the-art mediante la interpretación visual y las métricas estadísticas

    Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Get PDF
    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data

    Analysis of Slewing and Attitude Determination Requirements for CTEx

    Get PDF
    This thesis examines the slewing and attitude determination requirements for the Chromotomographic Experiment (CTEX), a chromotomographic-based hyperspectral imager, to be mounted on-board the Japanese Experiment Module (JEM) External Facility (EF). The in-track slewing requirement is driven by the facts that CTEx has a very small field of view (FOV) and is required to collect 10 seconds of data for any given collection window. The need to slew in the cross-track direction is a product of the small FOV and target/calibration site access. CTEx incorporates a two-axis slow-steering dwell mirror with a range of ± 8 degrees and an accuracy of 10 arcseconds in each axis to slew the FOV. The inherent inaccuracy in the knowledge of the International Space Station\u27s (ISS) attitude (± 3 degrees) poses significant complications in accurately pointing CTEx even with more accurate (0.3 degrees) attitude information provided by the JEM. The desire is for CTEx to incorporate a star tracker with 1 arcsecond accuracy to determine attitude without reliance on outside sources

    Improved boreal vegetation mapping using imaging spectroscopy to aid wildfire management, Interior Alaska

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2023Wildfires are a natural and essential part of Alaska ecosystems, but excessive wildfires pose a risk to the ecosystem's health and diversity, as well as to human life and property. To manage wildfires effectively, vegetation/fuel maps play a critical role in identifying high-risk areas and allocating resources for prevention, suppression, and recovery efforts. Furthermore, vegetation/fuel maps are an important input for fire behavior models, along with weather and topography data. By predicting fire behavior, such as spread rate, intensity, and direction, fuel models allow fire managers to make informed decisions about wildfire suppression, management, and prevention. Traditionally used vegetation/fuel maps in Alaska are inadequate due to a lack of detailed information since they are primarily generated using coarser resolution (30m) multispectral data. Hyperspectral remote sensing offers an efficient approach for better characterization of forest vegetation due to the narrow bandwidth and finer spatial resolution. However, the high cost associated with data acquisition remains a significant challenge to the widespread application of hyperspectral data. The aim of this research is to create accurate and detailed vegetation maps and upscale them for the boreal region of Alaska. The study involves hyperspectral data simulation using Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG) data and publicly available Sentinel-2 multispectral data, ground spectra convolved to Sentinel-2 and AVIRIS-NG using the spectral response function of each sensor. Simulated data captured the minute details found in the real AVIRIS-NG data and were classified to map vegetation. Using the ground data from Bonanza Creek Long-Term Ecological Research sites, we compared the new maps with the two existing map products (the LANDFIRE's Existing Vegetation Type (EVT) and Alaska Vegetation and Wetland Composite). The maps generated using simulated data showed an improvement of 33% in accuracy and are more detailed than existing map products. In addition to fuel maps, we performed sub-pixel level mapping to generate a needleleaf fraction map, which serves fire management needs since needleleaf species are highly flammable. However, validating the sub-pixel product was challenging. To overcome this, we devised a novel validation method incorporating high-resolution airborne hyperspectral data (1m) and ground data. The study addresses the limitations of traditional fuel/vegetation maps by providing a more detailed and accurate representation of vegetation/fuel in Alaska. The methods and findings advance fuel and vegetation mapping research in Alaska and offer a novel pathway to generate detailed fuel maps for boreal Alaska to aid wildfire management.Alaska Established Program to Stimulate Competitive Research (EPSCoR), AmericaView, and the College of Natural Science and Mathematics, National Science Foundation award OIA-1757348, State of Alaska and the U.S. Geological Survey Grant/Cooperative Agreement No. G18AP0007

    Development of the Ames Global Hyperspectral Synthetic Data Set: Surface Bidirectional Reflectance Distribution Function

    Get PDF
    This study introduces the Ames Global Hyperspectral Synthetic Data set (AGHSD), in particular the surface bidirectional reflectance distribution function (BRDF) product, to support the NASA Surface Biology and Geology (SBG) mission development. The data set is generated based on the corresponding multispectral BRDF products from NASA\u27s MODIS satellite sensor. Based on theories of radiative transfer in vegetation canopies, we derive a simple but robust relationship that indicates that the hyperspectral surface BRDF can be accurately approximated as a weighted sum of the soil surface reflectance, the leaf single albedo, and the canopy scattering coefficient, where the weights or coefficients are spectrally invariant and thus readily estimated from the multispectral MODIS products. We validate the algorithm with simulations by a Monte Carlo Ray Tracing model and find the results highly consistent with the theoretic derivation. Using reflectance spectra of soil and vegetation derived from existing spectral libraries, we apply the algorithm to generate the AGHSD BRDF product at 1 km and 8-day resolutions for the year of 2019. The data set is biogeochemically and biogeophysically coherent and consistent, and serves the goal to support the SBG community in developing sciences and applications for the future global imaging spectroscopy mission

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Cloud removal from optical remote sensing images

    Full text link
    Optical remote sensing images used for Earth surface observations are constantly contaminated by cloud cover. Clouds dynamically affect the applications of optical data and increase the difficulty of image analysis. Therefore, cloud is considered as one of the sources of noise in optical image data, and its detection and removal need to be operated as a pre-processing step in most remote sensing image processing applications. This thesis investigates the current cloud detection and removal algorithms and develops three new cloud removal methods to improve the accuracy of the results. A thin cloud removal method based on signal transmission principles and spectral mixture analysis (ST-SMA) for pixel correction is developed in the first contribution. This method considers not only the additive reflectance from the clouds but also the energy absorption when solar radiation passes through them. Data correction is achieved by subtracting the product of the cloud endmember signature and the cloud abundance and rescaling according to the cloud thickness. The proposed method has no requirement for meteorological data and does not rely on reference images. The experimental results indicate that the proposed approach is able to perform effective removal of thin clouds in different scenarios. In the second study, an effective cloud removal method is proposed by taking advantage of the noise-adjusted principal components transform (CR-NAPCT). It is found that the signal-to-noise ratio (S/N) of cloud data is higher than data without cloud contamination, when spatial correlation is considered and are shown in the first NAPCT component (NAPC1) in the NAPCT data. An inverse transformation with a modified first component is then applied to generate the cloud free image. The effectiveness of the proposed method is assessed by performing experiments on simulated and real data to compare the quantitative and qualitative performance of the proposed approach. The third study of this thesis deals with both cloud and cloud shadow problems with the aid of an auxiliary image in a clear sky condition. A new cloud removal approach called multitemporal dictionary learning (MDL) is proposed. Dictionaries of the cloudy areas (target data) and the cloud free areas (reference data) are learned separately in the spectral domain. An online dictionary learning method is then applied to obtain the two dictionaries in this method. The removal process is conducted by using the coefficients from the reference image and the dictionary learned from the target image. This method is able to recover the data contaminated by thin and thick clouds or cloud shadows. The experimental results show that the MDL method is effective from both quantitative and qualitative viewpoints
    corecore