47 research outputs found

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Framework for botnet emulation and analysis

    Get PDF
    Criminals use the anonymity and pervasiveness of the Internet to commit fraud, extortion, and theft. Botnets are used as the primary tool for this criminal activity. Botnets allow criminals to accumulate and covertly control multiple Internet-connected computers. They use this network of controlled computers to flood networks with traffic from multiple sources, send spam, spread infection, spy on users, commit click fraud, run adware, and host phishing sites. This presents serious privacy risks and financial burdens to businesses and individuals. Furthermore, all indicators show that the problem is worsening because the research and development cycle of the criminal industry is faster than that of security research. To enable researchers to measure botnet connection models and counter-measures, a flexible, rapidly augmentable framework for creating test botnets is provided. This botnet framework, written in the Ruby language, enables researchers to run a botnet on a closed network and to rapidly implement new communication, spreading, control, and attack mechanisms for study. This is a significant improvement over augmenting C++ code-bases for the most popular botnets, Agobot and SDBot. Rubot allows researchers to implement new threats and their corresponding defenses before the criminal industry can. The Rubot experiment framework includes models for some of the latest trends in botnet operation such as peer-to-peer based control, fast-flux DNS, and periodic updates. Our approach implements the key network features from existing botnets and provides the required infrastructure to run the botnet in a closed environment.Ph.D.Committee Chair: Copeland, John; Committee Member: Durgin, Gregory; Committee Member: Goodman, Seymour; Committee Member: Owen, Henry; Committee Member: Riley, Georg

    A Defense Framework Against Denial-of-Service in Computer Networks

    Get PDF
    Denial-of-Service (DoS) is a computer security problem that poses a serious challenge totrustworthiness of services deployed over computer networks. The aim of DoS attacks isto make services unavailable to legitimate users, and current network architectures alloweasy-to-launch, hard-to-stop DoS attacks. Particularly challenging are the service-level DoSattacks, whereby the victim service is flooded with legitimate-like requests, and the jammingattack, in which wireless communication is blocked by malicious radio interference. Theseattacks are overwhelming even for massively-resourced services, and effective and efficientdefenses are highly needed. This work contributes a novel defense framework, which I call dodging, against service-level DoS and wireless jamming. Dodging has two components: (1) the careful assignment ofservers to clients to achieve accurate and quick identification of service-level DoS attackersand (2) the continuous and unpredictable-to-attackers reconfiguration of the client-serverassignment and the radio-channel mapping to withstand service-level and jamming DoSattacks. Dodging creates hard-to-evade baits, or traps, and dilutes the attack "fire power".The traps identify the attackers when they violate the mapping function and even when theyattack while correctly following the mapping function. Moreover, dodging keeps attackers"in the dark", trying to follow the unpredictably changing mapping. They may hit a fewtimes but lose "precious" time before they are identified and stopped. Three dodging-based DoS defense algorithms are developed in this work. They are moreresource-efficient than state-of-the-art DoS detection and mitigation techniques. Honeybees combines channel hopping and error-correcting codes to achieve bandwidth-efficientand energy-efficient mitigation of jamming in multi-radio networks. In roaming honeypots, dodging enables the camouflaging of honeypots, or trap machines, as real servers,making it hard for attackers to locate and avoid the traps. Furthermore, shuffling requestsover servers opens up windows of opportunity, during which legitimate requests are serviced.Live baiting, efficiently identifies service-level DoS attackers by employing results fromthe group-testing theory, discovering defective members in a population using the minimumnumber of tests. The cost and benefit of the dodging algorithms are analyzed theoretically,in simulation, and using prototype experiments

    Selected Computing Research Papers Volume 1 June 2012

    Get PDF
    An Evaluation of Anti-phishing Solutions (Arinze Bona Umeaku) ..................................... 1 A Detailed Analysis of Current Biometric Research Aimed at Improving Online Authentication Systems (Daniel Brown) .............................................................................. 7 An Evaluation of Current Intrusion Detection Systems Research (Gavin Alexander Burns) .................................................................................................... 13 An Analysis of Current Research on Quantum Key Distribution (Mark Lorraine) ............ 19 A Critical Review of Current Distributed Denial of Service Prevention Methodologies (Paul Mains) ............................................................................................... 29 An Evaluation of Current Computing Methodologies Aimed at Improving the Prevention of SQL Injection Attacks in Web Based Applications (Niall Marsh) .............. 39 An Evaluation of Proposals to Detect Cheating in Multiplayer Online Games (Bradley Peacock) ............................................................................................................... 45 An Empirical Study of Security Techniques Used In Online Banking (Rajinder D G Singh) .......................................................................................................... 51 A Critical Study on Proposed Firewall Implementation Methods in Modern Networks (Loghin Tivig) .................................................................................................... 5

    Adaptive Response System for Distributed Denial-of-Service Attacks

    No full text
    The continued prevalence and severe damaging effects of the Distributed Denial of Service (DDoS) attacks in today’s Internet raise growing security concerns and call for an immediate response to come up with better solutions to tackle DDoS attacks. The current DDoS prevention mechanisms are usually inflexible and determined attackers with knowledge of these mechanisms, could work around them. Most existing detection and response mechanisms are standalone systems which do not rely on adaptive updates to mitigate attacks. As different responses vary in their “leniency” in treating detected attack traffic, there is a need for an Adaptive Response System. We designed and implemented our DDoS Adaptive ResponsE (DARE) System, which is a distributed DDoS mitigation system capable of executing appropriate detection and mitigation responses automatically and adaptively according to the attacks. It supports easy integrations for both signature-based and anomaly-based detection modules. Additionally, the design of DARE’s individual components takes into consideration the strengths and weaknesses of existing defence mechanisms, and the characteristics and possible future mutations of DDoS attacks. These components consist of an Enhanced TCP SYN Attack Detector and Bloom-based Filter, a DDoS Flooding Attack Detector and Flow Identifier, and a Non Intrusive IP Traceback mechanism. The components work together interactively to adapt the detections and responses in accordance to the attack types. Experiments conducted on DARE show that the attack detection and mitigation are successfully completed within seconds, with about 60% to 86% of the attack traffic being dropped, while availability for legitimate and new legitimate requests is maintained. DARE is able to detect and trigger appropriate responses in accordance to the attacks being launched with high accuracy, effectiveness and efficiency. We also designed and implemented a Traffic Redirection Attack Protection System (TRAPS), a stand-alone DDoS attack detection and mitigation system for IPv6 networks. In TRAPS, the victim under attack verifies the authenticity of the source by performing virtual relocations to differentiate the legitimate traffic from the attack traffic. TRAPS requires minimal deployment effort and does not require modifications to the Internet infrastructure due to its incorporation of the Mobile IPv6 protocol. Experiments to test the feasibility of TRAPS were carried out in a testbed environment to verify that it would work with the existing Mobile IPv6 implementation. It was observed that the operations of each module were functioning correctly and TRAPS was able to successfully mitigate an attack launched with spoofed source IP addresses

    Protecting Networked Systems from Malware Threats

    Get PDF
    Currently, networks and networked systems are essential media for us to communicate with other people, access resources, and share information. Reading (or sending) emails, navigating web sites, and uploading pictures to social medias are common behaviors using networks. Besides these, networks and networked systems are used to store or access sensitive or private information. In addition, major economic activities, such as buying food and selling used cars, can also be operated with networks. Likewise, we live with networks and networked systems. As network usages are increasing and popular, people face the problems of net- work attacks. Attackers on the networks can steal people’s private information, mislead people to pay money for fake products, and threaten people, who operate online commercial sites, by bothering their services. There are much more diverse types of network attacks that torture many people using networks, and the situation is still serious. The proposal in this dissertation starts from the following two research questions: (i) what kind of network attack is prevalent and how we can investigate it and (ii) how we can protect our networks and networked systems from these attacks. Therefore, this dissertation spans two main areas to provide answers for each question. First, we analyze the behaviors and characteristics of large-scale bot infected hosts, and it provides us new findings of network malware and new insights that are useful to detect (or defeat) recent network threats. To do this, we investigate the characteristics of victims infected by recent popular botnet - Conficker, MegaD, and Srizbi. In addition, we propose a method to detect these bots by correlating network and host features. Second, we suggest new frameworks to make our networks secure based on the new network technology of Software Defined Networking (SDN). Currently, SDN technology is considered as a future major network trend, and it can dynamically program networks as we want. Our suggested frameworks for SDN can be used to devise network security applications easily, and we also provide an approach to make SDN technology secure

    Tracking and Mitigation of Malicious Remote Control Networks

    Full text link
    Attacks against end-users are one of the negative side effects of today’s networks. The goal of the attacker is to compromise the victim’s machine and obtain control over it. This machine is then used to carry out denial-of-service attacks, to send out spam mails, or for other nefarious purposes. From an attacker’s point of view, this kind of attack is even more efficient if she manages to compromise a large number of machines in parallel. In order to control all these machines, she establishes a "malicious remote control network", i.e., a mechanism that enables an attacker the control over a large number of compromised machines for illicit activities. The most common type of these networks observed so far are so called "botnets". Since these networks are one of the main factors behind current abuses on the Internet, we need to find novel approaches to stop them in an automated and efficient way. In this thesis we focus on this open problem and propose a general root cause methodology to stop malicious remote control networks. The basic idea of our method consists of three steps. In the first step, we use "honeypots" to collect information. A honeypot is an information system resource whose value lies in unauthorized or illicit use of that resource. This technique enables us to study current attacks on the Internet and we can for example capture samples of autonomous spreading malware ("malicious software") in an automated way. We analyze the collected data to extract information about the remote control mechanism in an automated fashion. For example, we utilize an automated binary analysis tool to find the Command & Control (C&C) server that is used to send commands to the infected machines. In the second step, we use the extracted information to infiltrate the malicious remote control networks. This can for example be implemented by impersonating as a bot and infiltrating the remote control channel. Finally, in the third step we use the information collected during the infiltration phase to mitigate the network, e.g., by shutting down the remote control channel such that the attacker cannot send commands to the compromised machines. In this thesis we show the practical feasibility of this method. We examine different kinds of malicious remote control networks and discuss how we can track all of them in an automated way. As a first example, we study botnets that use a central C&C server: We illustrate how the three steps can be implemented in practice and present empirical measurement results obtained on the Internet. Second, we investigate botnets that use a peer-to-peer based communication channel. Mitigating these botnets is harder since no central C&C server exists which could be taken offline. Nevertheless, our methodology can also be applied to this kind of networks and we present empirical measurement results substantiating our method. Third, we study fast-flux service networks. The idea behind these networks is that the attacker does not directly abuse the compromised machines, but uses them to establish a proxy network on top of these machines to enable a robust hosting infrastructure. Our method can be applied to this novel kind of malicious remote control networks and we present empirical results supporting this claim. We anticipate that the methodology proposed in this thesis can also be used to track and mitigate other kinds of malicious remote control networks
    corecore