6,459 research outputs found

    Social Welfare Maximization Auction in Edge Computing Resource Allocation for Mobile Blockchain

    Full text link
    Blockchain, an emerging decentralized security system, has been applied in many applications, such as bitcoin, smart grid, and Internet-of-Things. However, running the mining process may cost too much energy consumption and computing resource usage on handheld devices, which restricts the use of blockchain in mobile environments. In this paper, we consider deploying edge computing service to support the mobile blockchain. We propose an auction-based edge computing resource market of the edge computing service provider. Since there is competition among miners, the allocative externalities (positive and negative) are taken into account in the model. In our auction mechanism, we maximize the social welfare while guaranteeing the truthfulness, individual rationality and computational efficiency. Based on blockchain mining experiment results, we define a hash power function that characterizes the probability of successfully mining a block. Through extensive simulations, we evaluate the performance of our auction mechanism which shows that our edge computing resources market model can efficiently solve the social welfare maximization problem for the edge computing service provider

    Energy-Efficient Resource Allocation for Device-to-Device Underlay Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput and extending battery life of user equipments. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered as bidders that compete for channel resources, and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication, and present numerical simulations to verify the proposed algorithm.Comment: IEEE Transactions on Wireless Communication
    • …
    corecore