515 research outputs found

    Novel Robust Control of a 7-DOF Exoskeleton Robot

    Get PDF
    This paper proposes a novel robust control method for the control of a 7-DOF exoskeleton robot. The external disturbances and unknown dynamics in the form of friction forces, different upper-limb\u27s mass, backlash, and input saturation make robot unstable, which prevents the robot from correctly following the defined path. A new fractional sliding mode controller (NFSMC) is designed, which is robust against unknown dynamic and external disturbances. Fractional PID controller (FPID) has high trajectory tracking, but it is not robust against external disturbances. Therefore, by combining NFSMC and FPID controllers, a new compound fractional PID sliding mode controller (NCFPIDSMC) is proposed, which benefits high trajectory tracking of FPID and robustness of NFSMC. The stability of the proposed control method is verified by Lyapunov theory. A random noise is applied in order to confirm the robustness of the proposed control method

    Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes

    Get PDF
    International audiencePartitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot

    A Comparative Study of LQR and Integral Sliding Mode Control Strategies for Position Tracking Control of Robotic Manipulators

    Get PDF
    This paper provides a systematic comparative study of position tracking control of nonlinear robotic manipulators. The main contribution of this study is a comprehensive numerical simulation assessing position tracking performances and energy consumption of integral sliding mode control (ISMC), a linear-quadratic regulator with integral action (LQRT), and optimal integral sliding mode control (OISMC) under three conditions; namely, Case I) without the coupling effect, Case II) with the coupling effect on Link 1 only, and Case III) with the coupling effect on Link 2 only. The viability of the concept is evaluated based on three performance criteria, i.e., the step-response characteristics, position tracking error, and energy consumption of the aforementioned controllers. Based upon the simulation study, it has been found that OISMC offers performances almost similar to ISMC with more than 90% improvement of tracking performance under several cases compared to LQRT; however, energy consumption is successfully reduced by 3.6% in comparison to ISMC. Energy consumption of OISMC can be further reduced by applying optimization algorithms in tuning the weighting matrices. This paper can be considered significant as a robotic system with high tracking accuracy and low energy consumption is highly demanded to be implemented in smart factories, especially for autonomous systems

    Performance comparison of structured H∞ based looptune and LQR for a 4-DOF robotic manipulator

    Get PDF
    We explore looptune, a MATLAB-based structured H1 synthesis technique in the context of robotics. Position control of a 4 Degree of Freedom (DOF) serial robotic manipulator developed using Simulink is the problem under consideration. Three full state feedback control systems were developed, analyzed and compared for both steady-state and transient performance using the Linear Quadratic Regulator (LQR) and looptune. Initially, a single gain feedback controller was synthesized using LQR. This system was then modified by augmenting the state feedback controller with Proportional Integral (PI) and Integral regulators, thereby creating a second and third control system respectively. In both the second and third control systems, the LQR synthesized gain and additional gains were further tuned using looptune to achieve improvement in performance. The second and third systems were also compared in terms of tracking a time-dependent trajectory. Finally, the LQR and looptune synthesized controllers were tested for robustness by simultaneously increasing the mass of each manipulator link. In comparison to LQR, the second system consisting of Single Input Single Output (SISO) PI controllers and the state feedback matrix succeeded in meeting the control objectives in terms of performance, optimality, trajectory tracking, and robustness. The third system did not improve performance in contrast to LQR, but still showed robustness under mass variation. In conclusion, our results have shown looptune to have a comparatively better performance over LQR thereby highlighting its promising potential for future emerging control system applications

    A Robust Controller Design for Simple Robotic Human Arm

    Get PDF
    Nowadays, the manipulator of two degrees of freedom (2DOF) has many applications. One is a human arm that may be utilized in robotic rehabilitation. The 2DOF controlled robot manipulator usually acts like human arms. This paper aims to design a robust, stable controller for the upper limb robotic model. A sliding mode control (SMC) approach is proposed to realize stability, tracing accuracy, and robustness for 2DOF robotic manipulator. Based on the general manipulator equation of motion, two SMCs are designed. The first is designed according to the input–output stability constraints. The second is designed according to the adaptive law. Not only the trajectory tracking is guaranteed but also stability is ensured. The stability of the controllers is examined based on Lyapunov stability criteria. The controllers and the robotic arm are formulated analytically. The MATLAB platform is adopted to examine and validate the proposed controller’s performance. The addition of adaptation law in the SMC scheme improves the results for the two designed controllers and shows remarkable trajectory tracking and system stability as well. The improvement rate shows an enhancement of 40.5% and 36.7% for manipulator joints 1 and 2, respectively

    Extended grey wolf optimization–based adaptive fast nonsingular terminal sliding mode control of a robotic manipulator

    Get PDF
    This article proposes a novel hybrid metaheuristic technique based on nonsingular terminal sliding mode controller, time delay estimation method, an extended grey wolf optimization algorithm and adaptive super twisting control law. The fast convergence is assured by nonsingular terminal sliding mode controller owing to its inherent nonlinear property and no prior knowledge of the robot dynamics is required due to time delay estimation. The proposed extended grey wolf optimization algorithm determines an optimal approximation of the inertial matrix of the robot. Moreover, adaptive super twisting control based on the Lyapunov approach overcomes the disturbances and compensate the higher dynamics not achievable by the time delay estimation method. First, the fast nonsingular terminal sliding mode controller relying on time delay estimation is designed and is combined with super twisting control for chattering attenuation. The constant gain matrix of the time delay is determined by the proposed extended grey wolf optimization algorithm. Second, an adaptive law based on Lyapunov stability theorem is designed for improving tracking performance in the presence of uncertainties and disturbances. The novelty of the proposed method lies in the adaptive law where the prior knowledge of parametric uncertainties and disturbances is not needed. Moreover, the constant gain matrix of time delay estimation method is obtained using the proposed algorithm. The control method has been tested in simulation on a 3-degrees of freedom robotic manipulator in trajectory tracking mode in the presence of control disturbances and uncertainties. The results obtained confirmed the effectiveness, robustness and the superior precision of the proposed control method compared to the classical ones

    Modelling and control of mechatronic and robotic systems

    Get PDF
    3noopenopenGasparetto A.; Seriani S.; Scalera L.Gasparetto, A.; Seriani, S.; Scalera, L
    • 

    corecore