494 research outputs found

    A Review of Control Techniques Future Trends in Wind Energy Turbine Systems with Doubly Fed Induction Generators (DFIG)

    Get PDF
    تعتبر طاقة الرياح حاليا واحدة من أكثر مصادر الطاقة الخضراء النظيفة الملاءمة على نطاق واسع في العالم. تم تطوير العديد من مبادئ توربينات الرياح بستخدام  المولدات المختلفة لتحويل طاقة الرياح المتاحة إلى طاقة كهربائية. يعد نظام المولد الحثي ذي التغذية المزدوجة DFIG لتوربينات الرياح ذات السرعة المتغيرة نسبيا (VSWT) هو الأكثر ملاءمة لطاقة توربينات الرياح بسبب فوائده العديدة مقارنة بتوربينات الرياح ذات السرعة الثابتة نسبيا (FSWT). تقدم هذه الورقة مراجعة و مقارنة عن طاقة توربينات الرياح المختلفة وملخصًا قيمًا للعمل الأخير المتعلقة بأنظمة طاقة الرياح المختلفة (WECS) لنمذجة DFIG وأقصى نقطة طاقة MPP وأحدث نظام تحكم للتشغيل. ومن ناحية أخرى تم في الدراسة الحالية تقديم مقارنات ومناقشات بين توربينات الرياح المختلفة لتكون مفيدة للدراسات البحثية.Wind energy is currently widely regarded as one of the most favorable green clean sources of energy. Several wind turbine principles with various generator architectures have been evolved to exchange the available wind energy into electric power. The DFIG partial Variable-Speed Wind Turbine (VSWT) system is most proper for wind turbine energy because of its numerous benefits over Fixed-Speed Wind Turbines (FSWT). This paper introduces a comparative review of the different wind turbine conversion energy and a valuable summary of the recent work in the literature on different Wind Energy Conversion Systems (WECS) of a DFIG modeling, Maximum Power Point (MPP), and the latest control system for operation. On the other side, comparisons and discussions between different wind turbines have been presented in the current study to be beneficial for research studies

    A Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability

    Get PDF
    This paper presents a novel type of variable speed wind turbine with a new drive train different from the variable speed wind turbine commonly used nowadays. In this concept, a synchronous generator is directly coupled with the grid, therefore, the wind turbine transient overload capability and grid voltage support capability can be significantly improved. An electromagnetic coupling speed regulating device (EMCD) is used to connect the gearbox high speed shaft and synchronous generator rotor shaft, transmitting torque to the synchronous generator, while decoupling the gearbox side and the synchronous generator, so the synchronous generator torque oscillations during a grid fault are not transmitted to the gearbox. The EMCD is composed of an electromagnetic coupler and a one quadrant operation converter with reduced capability and low cost. A control strategy for the new wind turbine is proposed and a 2 MW wind turbine model is built to study the wind turbine fault ride-through capability. An integrated simulation environment based on the aeroelastic code HAWC2 and software Matlab/Simulink is used to study its fault ride-through capability and the impact on the structural loads during grid three phase and two phase short circuit faults

    PSO-backstepping controller of a grid connected DFIG based wind turbine

    Get PDF
    The paper demonstrates the feasibility of an optimal backstepping controller for doubly fed induction generator based wind turbine (DFIG). The main purpose is the extract of maximum energy and the control of active and reactive power exchanged between the generator and electrical grid in presence of uncertainty. The maximum energy is obtained by applying an algorithm based on artificial bee colony approach. Particle swarm optimization is used to select optimal value of backstepping’s parameters. The simulation is carried out on 2.4 MW DFIG based wind turbine system. The optimized performance of the proposed control technique under uncertainty parameters is established by simulation results

    Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    Get PDF
    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy, the rotor side controller can convert the imbalanced power into the kinetic energy of the WT by increasing its rotor speed, when a low voltage due to a grid fault occurs at, e.g., the point of common coupling (PCC). The proposed grid side control scheme introduces a compensation term reflecting the instantaneous DC-link current of the rotor side converter in order to smooth the DC-link voltage fluctuations during the grid fault. A major difference from other methods is that the proposed control strategy can absorb the additional kinetic energy during the fault conditions, and significantly reduce the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults

    Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system

    Get PDF
    Introduction. Recently, wind power generation has grown at an alarming rate in the past decade and will continue to do so as power electronic technology continues to advance. Purpose. Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system. Methods. This paper deals with the robust power control of a grid-connected brushless doubly-fed reluctance generator driven by the variable speed wind turbine using a variable structure control theory called sliding mode control. The traditional sliding mode approach produces an unpleasant chattering phenomenon that could harm the system. To eliminate chattering, it is necessary to employ a high-order sliding mode controller. The super-twisting algorithm is one type of nonlinear control presented in order to ensure the effectiveness of the control structure we tested these controllers in two different ways reference tracking, and robustness. Results. Simulation results using MATLAB/Simulink have demonstrated the effectiveness and robustness of the super-twisting sliding mode controller.Вступ. В останнє десятиліття виробництво вітрової енергії зростало загрозливими темпами і продовжуватиме зростати у міру розвитку технологій силової електроніки. Мета. Управління ковзним режимом суперскручування для реактивного безщіткового генератора з подвійним живленням на основі системи перетворення енергії вітру. Методи. У цій статті розглядається надійне керування потужністю підключеного до мережі безщіткового реактивного генератора з подвійним живленням, що приводиться в дію вітряною турбіною зі змінною швидкістю, з використанням теорії управління зі змінною структурою, яка називається керуванням в ковзному режимі. Традиційний підхід зі ковзним режимом створює неприємне явище вібрації, що може зашкодити системі. Для усунення вібрації необхідно використовувати регулятор ковзного режиму високого порядку. Алгоритм суперскручування - це один із типів нелінійного управління, представлений для забезпечення ефективності структури управління. Ми протестували ці контролери двома різними способами: відстеженням посилань та надійністю. Результати моделювання з використанням MATLAB/Simulink продемонстрували ефективність та надійність контролера ковзного режиму суперскручування

    Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    Get PDF

    Control Studies of DFIG based Wind Power Systems

    Get PDF
    Wind energy as an outstanding and competitive form of renewable energy, has been growing fast worldwide in recent years because of its importance to reduce the pollutant emission generated by conventional thermal power plants and the rising prices and the unstable supplies of fossil-fuel. However, in the development of wind energy, there are still many ongoing challenges. An important challenge is the need of voltage control to maintain the terminal voltage of a wind plant to make it a PV bus like conventional generators with excitation control. In the literature with PI controllers used, the parameters of PI controllers need to be tuned as a tradeoff or compromise among various operating conditions. In this work, a new voltage control approach is presented. In the proposed approach, the PI control gains are dynamically adjusted based on the dynamic, continuous sensitivity which essentially indicates the dynamic relationship between the change of control gains and the desired output voltage. Hence, this control approach does not require any good estimation or tuning of fixed control gains because it has the self-learning mechanism via the dynamic sensitivity. This also gives the plug-and-play feature of DFIG controllers to make it promising in utility practices. Another key challenge in power regulation of wind energy is the control design in wind energy conversion system (WECS) to realize the tradeoff between the energy cost and control performance subject to stochastic wind speeds. In this work, the chance constraints are considered to address the control inputs and system outputs, as opposed to deterministic constraints in the literature, where the chance constraints include the stochastic behavior of the wind speed fluctuation. Two different control problems are considered here: The first one assumes the wind speed disturbance’s distribution is Gaussian; the second one assumes the disturbance is norm bounded, and the problem is formulated as a min-max optimization problem which has not been considered in the literature. Both problems are formulated as semi-definite program (SDP) optimization problems that can be solved efficiently with existing software tools. And simulation results are provided to demonstrate the validity of the proposed method

    Dynamic wind turbine models in power system simulation tool DIgSILENT

    Get PDF
    corecore