775 research outputs found

    AFTI/F-16 flight test results and lessons

    Get PDF
    The advanced fighter technology integration (AFTI) F-16 aircraft is a highly complex digital flight control system integrated with advanced avionics and cockpit. The use of dissimilar backup modes if the primary system fails requires the designer to trade off system simplicity and capability. The tradeoff is evident in the AFTI/F-16 aircraft with its limited stability and fly by wire digital flight control systems when a generic software failure occurs the backup or normal mode must provide equivalent envelop protection during the transition to degraded flight control. The complexity of systems like the AFTI/F-16 system defines a second design issue, which is divided into two segments: (1) the effect on testing, (2) and the pilot's ability to act correctly in the limited time available for cockpit decisions. The large matrix of states possible with the AFTI/F-16 flight control system illustrates the difficulty of both testing the system and choosing real time pilot actions. The third generic issue is the possible reductions in the user's reliability expectations where false single channel information can be displayed at the pilot vehicle interface while the redundant set remains functional

    Definition of display/control requirements for assault transport night/adverse weather capability

    Get PDF
    A Helicopter Night Vision System was developed to improve low-altitude night and/or adverse weather assult transport capabilities. Man-in-the-loop simulation experiments were performed to define the minimum display and control requirements for the assult transport mission and investigate forward looking infrared sensor requirements, along with alternative displays such as panel mounted displays (PMD) helmet mounted displays (HMD), and integrated control display units. Also explored were navigation requirements, pilot/copilot interaction, and overall cockpit arrangement. Pilot use of an HMD and copilot use of a PMD appear as both the preferred and most effective night navigation combination

    Flight experience with manually controlled unconventional aircraft motions

    Get PDF
    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed

    Description and performance of the Langley differential maneuvering simulator

    Get PDF
    The differential maneuvering simulator for simulating two aircraft or spacecraft operating in a differential mode is described. Tests made to verify that the system could provide the required simulated aircraft motions are given. The mathematical model which converts computed aircraft motions into the required motions of the various projector gimbals is described

    Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    Get PDF
    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test

    Fixed-base simulator investigation of lightweight vehicles for lunar escape to orbit with kinesthetic attitude control and simplified manual guidance

    Get PDF
    Piloted simulator investigation of lightweight vehicles for emergency lunar escape to orbit with kinesthetic attitude control and simplified manual guidanc

    Helmet-mounted pilot night vision systems: Human factors issues

    Get PDF
    Helmet-mounted displays of infrared imagery (forward-looking infrared (FLIR)) allow helicopter pilots to perform low level missions at night and in low visibility. However, pilots experience high visual and cognitive workload during these missions, and their performance capabilities may be reduced. Human factors problems inherent in existing systems stem from three primary sources: the nature of thermal imagery; the characteristics of specific FLIR systems; and the difficulty of using FLIR system for flying and/or visually acquiring and tracking objects in the environment. The pilot night vision system (PNVS) in the Apache AH-64 provides a monochrome, 30 by 40 deg helmet-mounted display of infrared imagery. Thermal imagery is inferior to television imagery in both resolution and contrast ratio. Gray shades represent temperatures differences rather than brightness variability, and images undergo significant changes over time. The limited field of view, displacement of the sensor from the pilot's eye position, and monocular presentation of a bright FLIR image (while the other eye remains dark-adapted) are all potential sources of disorientation, limitations in depth and distance estimation, sensations of apparent motion, and difficulties in target and obstacle detection. Insufficient information about human perceptual and performance limitations restrains the ability of human factors specialists to provide significantly improved specifications, training programs, or alternative designs. Additional research is required to determine the most critical problem areas and to propose solutions that consider the human as well as the development of technology

    Threat expert system technology advisor

    Get PDF
    A prototype expert system was developed to determine the feasibility of using expert system technology to enhance the performance and survivability of helicopter pilots in a combat threat environment while flying NOE (Nap of the Earth) missions. The basis for the concept is the potential of using an Expert System Advisor to reduce the extreme overloading of the pilot who flies NOE mission below treetop level at approximately 40 knots while performing several other functions. The ultimate goal is to develop a Threat Expert System Advisor which provides threat information and advice that are better than even a highly experienced copilot. The results clearly show that the NOE pilot needs all the help in decision aiding and threat situation awareness that he can get. It clearly shows that heuristics are important and that an expert system for combat NOE helicopter missions can be of great help to the pilot in complex threat situations and in making decisions

    Final report on a study of automated rendezvous and docking for ATS 5 despin, volume 1

    Get PDF
    Investigation of cost effective utilization of space maintenance and repair techniques to despin Applications Technology Satellite number 5 - Vol.

    Development of ADOCS controllers and control laws. Volume 2: Literature review and preliminary analysis

    Get PDF
    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft
    • …
    corecore