3,407 research outputs found

    Development of Modeling and Simulation Platform for Path-Planning and Control of Autonomous Underwater Vehicles in Three-Dimensional Spaces

    Get PDF
    Autonomous underwater vehicles (AUVs) operating in deep sea and littoral environments have diverse applications including marine biology exploration, ocean environment monitoring, search for plane crash sites, inspection of ship-hulls and pipelines, underwater oil rig maintenance, border patrol, etc. Achieving autonomy in underwater vehicles relies on a tight integration between modules of sensing, navigation, decision-making, path-planning, trajectory tracking, and low-level control. This system integration task benefits from testing the related algorithms and techniques in a simulated environment before implementation in a physical test bed. This thesis reports on the development of a modeling and simulation platform that supports the design and testing of path planning and control algorithms in a synthetic AUV, representing a simulated version of a physical AUV. The approach allows integration between path-planners and closed-loop controllers that enable the synthetic AUV to track dynamically feasible trajectories in three-dimensional spaces. The dynamical behavior of the AUV is modeled using the equations of motion that incorporate the effects of external forces (e.g., buoyancy, gravity, hydrodynamic drag, centripetal force, Coriolis force, etc.), thrust forces, and inertial forces acting on the AUV. The equations of motion are translated into a state space formulation and the S-function feature of the Simulink and MATLAB scripts are used to evolve the state trajectories from initial conditions. A three-dimensional visualization of the resulting AUV motion is achieved by feeding the corresponding position and orientation states into an animation code. Experimental validation is carried out by performing integrated waypoint planner (e.g., using the popular A* algorithm) and PD controller implementations that allow the traversal of the synthetic AUV in two-dimensional (XY, XZ, YZ) and three-dimensional spaces. An underwater pipe-line inspection task carried out by the AUV is demonstrated in a simulated environment. The simulation testbed holds a potential to support planner and controller design for implementation in physical AUVs, thereby allowing exploration of various research topics in the field

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Robust data assimilation in river flow and stage estimation based on multiple imputation particle filter

    Get PDF
    In this paper, new method is proposed for a more robust Data Assimilation (DA) design of the river flow and stage estimation. By using the new sets of data that are derived from the incorporated Multi Imputation Particle Filter (MIPF) in the DA structure, the proposed method is found to have overcome the issue of missing observation data and contributed to a better estimation process. The convergence analysis of the MIPF is discussed and shows that the number of the particles and imputation influence the ability of this method to perform estimation. The simulation results of the MIPF demonstrated the superiority of the proposed approach when being compared to the Extended Kalman Filter (EKF) and Particle Filter (PF)

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Modeling and Motion Control Strategy for AUV

    Get PDF

    Multi-operated HIL Test Bench for Testing Underwater Robot’s Buoyancy Variation System

    Get PDF
    Nowadays underwater gliders have become to play a vital role in ocean exploration and allow to obtain the valuable information about underwater environment. The traditional approach to the development of such vehicles requires a thorough design of each subsystem and conducting a number of expensive full scale tests for validation the accuracy of connections between these subsystems. However, present requirements to cost-effective development of underwater vehicles need the development of a reliable sampling and testing platform that allows the conducting a preliminary design of components and systems (hardware and software) of the vehicle, its simulation and finally testing and verification of missions. This paper describes the development of the HIL test bench for underwater applications. Paper discuses some advantages of HIL methodology provides a brief overview of buoyancy variation systems. In this paper we focused on hydraulic part of the developed test bench and its architecture, environment and tools. Some obtained results of several buoyancy variation systems testing are described in this paper. These results have allowed us to estimate the most efficient design of the buoyancy variation system. The main contribution of this work is to present a powerful tool for engineers to find hidden errors in underwater gliders development process and to improve the integration between glider’s subsystems by gaining insights into their operation and dynamics
    • …
    corecore