3,889 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Intelligent Transportation System for Smart-Cities using Fuzzy Logic

    Get PDF
    According to United Nations population statistics 2017, the world population is 7.6 billion and is growing rapidily alomost 11 billion by end of 21 century with a 70% chance of continued growth, this rapid increasing population have created low standards of living in cities. Smart Cities are facing pressures associated with due innovations and globalization to improve their citizens life. Computational intelligence is the study of adaptive mechanism to facilitate intelligent behavior in changing and complex environments. Traffic congestion and monitoring has become one of the critical issues in big cities. The adaptive mechanism of computational intelligence in changing the behavior of complex environments of smart city is very effective. The developing framework and services for smart-city requires sound infrastructure, latest current technology adoption. A framework model with the integration of cloud-data, social network (SN) services that is collecting stream data with smart sensors in the context of smart cities is proposed. The adaptive mechanism of computational intelligence in changing thebehavior of complex environments of smart city is very effective. A radical framework that enables the analysis of big-data sets stemming from Social Networking (SN) sites. Smart cities understanding is a broad concept only city transportation sector is focused in this article. Fuzzy logic modeling techniques are used in many fields i.e. medical, engineering. business and computing related problems. To solve various traffic management issues in cities a detailed analysis of fuzzy logic system is proposed. This paper presents an analysis of the results achieved using Fuzzy Logic System (FLS) for smart cities. The results are verified using MATLAB Simulation

    Integrating Olfaction in a Robotic Telepresence Loop

    Get PDF
    In this work we propose enhancing a typical robotic telepresence architecture by considering olfactory and wind flow information in addition to the common audio and video channels. The objective is to expand the range of applications where robotics telepresence can be applied, including those related to the detection of volatile chemical substances (e.g. land-mine detection, explosive deactivation, operations in noxious environments, etc.). Concretely, we analyze how the sense of smell can be integrated in the telepresence loop, covering the digitization of the gases and wind flow present in the remote environment, the transmission through the communication network, and their display at the user location. Experiments under different environmental conditions are presented to validate the proposed telepresence system when localizing a gas emission leak at the remote environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore