18,030 research outputs found

    Foldable all-textile cavity-backed slot antennas for personal UWB localization

    Get PDF
    An all-textile multimoded cavity-backed slot antenna has been designed and fabricated for body-worn impulse radio ultra-wideband (IR-UWB) operation in the 3,744-4,742.4 MHz frequency band, thereby covering Channels 2 and 3 of the IEEE 802.15.4a standard. Its light weight, mechanical flexibility, and small footprint of 35 mm x 56 mm facilitate integration into textile for radio communication equipment for first aid responders, personal locator beacons, and equipment for localization and medical monitoring of children or the elderly. The antenna features a stable radiation pattern and reflection coefficient in diverse operating conditions such as in free space, when subject to diverse bending radii and when deployed on the torso or upper right arm of a test person. The high isolation toward the wearer's body originates from the antenna's hemispherical radiation pattern with a -3 dB beamwidth of 120 degrees and a front-to-back ratio higher than 11 dB over the entire band. Moreover, the antenna exhibits a measured maximum gain higher than 6.3 dBi and a radiation efficiency over 75%. In addition, orientation-specific pulse distortion introduced by the antenna element is analyzed by means of the System Fidelity Factor (SFF). The SFF of the communication link between two instances of this antenna is higher than 94% for all directions within the antenna's -3 dB beamwidth. This easily wearable and deployable antenna is suitable to support IR-UWB localization with an accuracy in the order of 5 cm

    Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation

    Get PDF
    Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments
    • …
    corecore