159 research outputs found

    Analysis, Design and Fabrication of Micromixers, Volume II

    Get PDF
    Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design

    Experimental study of helical milling on CFRP (carbon fibre reinforced polymer) for the hole making process

    Get PDF
    Generate borehole by helical milling process may be used effectively since accurate location of the hole may be secured by means of the feed screw graduations. Fiber delamination which is the main defect occurred during hole making process on carbon fiber reinforced polymer (CFRP) were investigate throughout an experimental study. Effects of thrust force (Fz), delamination factor (Fd) and surface roughness are evaluated. Objective of the experiment are to find best cutting parameter and tool design suitable to performed helical milling operation on CFRP. Two types of end mill with 4 flutes were used and results are evaluated. It was found that tool design 2-1 has higher performance on CFRP

    DESIGN AND MIXING PERFORMANCE OF PASSIVE MICROMIXERS: A CRITICAL REVIEW

    Get PDF
    This study extracts and reports notable findings on passive micromixers by conducting an exhaustive review of designs, their features, and mixing performance. The study has covered the relevant articles on passive micromixers published from 2010 to 2020. The analysis of filtered and selected articles sums up passive micromixers into four categories: designed inlets, designed mixing-channel, lamination-based, and flow obstacles-based. The prominent mixing channel categories identified in the study are split-and-recombine (SAR), convergent-divergent (C-D), and mixed (SAR, C-D, and others). Moreover, differences in mixing channel designs, number of inlets, and evaluation methods have been used in comparing the mixing performance of passive micromixers. The SAR and the obstacles-based micromixers were found to outperform the others. The designs covered in the present review show significant improvements in the mixing index. However, these studies were conducted in an isolated environment, and most of the time, their fabrication and device integration issues were ignored. The assortment and critical analysis of micromixers based on their design features and flow parameters will be helpful to researchers interested in designing new passive micromixers for microfluidic applications

    Design and simulation study of obstacle based passive micromixer

    Get PDF
    Micromixer can be dividing by two categories which are active micromixer and passive micromixer. Due to simple fabrication technology and the easy implementation in a complex microfluidic system, obstacle based passive micromixers will be the focus of this project. Due to laminar flow (Reynold Number < 1) passive micromixer is the best method in fluids mixing. Passive micromixers also depend on the channel geometry for mixing effectiveness. In this study, seven different micromixers were evaluated based on the baseline control Y micromixer. The micromixers are Y shape with obstacle as proposed in PS 1 micromixer, Y shape with internal rib micromixer, Y shape with obstacle design 2, Y shape with obstacle design 3, Y shape with obstacle design 4, and Y shape with obstacle design 5. These micromixers has 237Ī¼m channel length, 30Ī¼m inlet length, 90 between inlets ports, width and depth are 30Ī¼m each. The fluids used for mixing were blood which has 3.0 Ɨ 10-3 kg/Ī¼ms of viscosity and glycerin which has high viscosity than blood (1.49 Ɨ 10-3 kg/Ī¼ms). The fluids used to evaluate the differences in term of their visual performance based imageā€™s standard deviation by plotting the graph and mixing efficiency by calculation. Based on these evaluations, the Y shape with obstacle design 5 micromixers is the best micromixer design with the highest mixing efficiency of 100% at the outlet of the channel

    Analysis, Design and Fabrication of Micromixers

    Get PDF
    This book includes an editorial and 12 research papers on micromixers collected from the Special Issue published in Micromachines. The topics of the papers are focused on the design of micromixers, their fabrication, and their analysis. Some of them proposed novel micromixer designs. Most of them deal with passive micromixers, but two papers report studies on electrokinetic micromixers. Fully three-dimensional (3D) micromixers were investigated in some cases. One of the papers applied optimization techniques to the design of a 3D micromixer. A review paper is also included and reports a review of recently developed passive micromixers and a comparative analysis of 10 typical micromixers

    Particles Separation in Microfluidic Devices, Volume II

    Get PDF
    Microfluidic platforms are increasingly being used for separating a wide variety of particles based on their physical and chemical properties. In the past two decades, many practical applications have been found in chemical and biological sciences, including single cell analysis, clinical diagnostics, regenerative medicine, nanomaterials synthesis, environmental monitoring, etc. In this Special Issue, we invited contributions to report state-of-the-art developments in the fields of micro- and nanofluidic separation, fractionation, sorting, and purification of all classes of particles, including, but not limited to, active devices using electric, magnetic, optical, and acoustic forces; passive devices using geometries and hydrodynamic effects at the micro/nanoscale; confined and open platforms; label-based and label-free technology; and separation of bioparticles (including blood cells), circulating tumor cells, live/dead cells, exosomes, DNA, and non-bioparticles, including polymeric or inorganic micro- and nanoparticles, droplets, bubbles, etc. Practical devices that demonstrate capabilities to solve real-world problems were of particular interest

    Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Get PDF
    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/Ī¼l) with 10 times lower solution volume (3 Ī¼l). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.Portuguese Science Foundation - (SFRH/BD/44258/2008), ā€œSMART-ECā€ projec

    Process development using oscillatory baffled mesoreactors

    Get PDF
    PhD ThesisThe mesoscale oscillatory baffled reactor (meso-OBR) is a flow chemistry platform whose niche is the ability to convert long residence time batch processes to continuous processes. This reactor can rapidly screen reaction kinetics or optimise a reaction in flow with minimal waste. In this work, several areas were identified that could be addressed to broaden the applicability of this platform. Four main research themes were subsequently formulated and explored: (I) development of deeper understanding of the fluid mechanics in meso-OBRs, (II) development of a new hybrid heat pipe meso-OBR for improved thermal management, (III) further improvement of continuous screening using meso-OBRs by removing the solvent and employing better experiment design methodologies, and (IV) exploration of 3D printing for rapid reactor development. I. The flow structures in a meso-OBR containing different helical baffle geometries were studied using computational fluid dynamics simulations, validated by particle image velocimetry (PIV) experiments for the first time. It was demonstrated, using new quantification methods for the meso-OBR, that when using helical baffles swirling is responsible for providing a wider operating window for plug flow than other baffle designs. Further, a new flow regime resembling a Taylor-Couette flow was discovered that further improved the plug flow response. This new double vortex regime could conceivably improve multiphase mixing and enable flow measurements (e.g. using thermocouples inside the reactor) to be conducted without degrading the mixing condition. This work also provides a new framework for validating simulated OBR flows using PIV, by quantitatively comparing turbulent flow features instead of qualitatively comparing average velocity fields. II. A new hybrid heat pipe meso-OBR (HPOBR) was prototyped to provide better thermal control of the meso-OBR by exploiting the rapid and isothermal properties of the heat pipe. This new HPOBR was compared with a jacketed meso-OBR (JOBR) for the thermal control of an exothermic imination reaction conducted without a solvent. Without a solvent or thermal control scheme, this reaction exceeded the boiling point of one of the reactants. A central composite experiment design explored the effects of reactant net flow rate, oscillation intensity and cooling capacity on the thermal and chemical response of the reaction. The HPOBR was able to passively control the temperature below the boiling point of the reactant at all conditions through heat spreading. Overall, a combined 260-fold improvement in throughput was demonstrated compared to a reactor requiring the use of a solvent. Thus, this ii wholly new reactor design provides a new approach to achieving green chemistry that could be theoretically easily adapted to other reactions. III. Analysis of in situ Fourier transform infrared (FTIR) spectroscopic data also suggested that the reaction kinetics of this solventless imination case study could be screened for the first time using the HPOBR and JOBR. This was tested by applying flow-screening protocols that adjusted the reactant molar ratio, residence time, and temperature in a single flow experiment. Both reactor configurations were able to screen the Arrhenius kinetics parameters (pre-exponential factors, activation energies, and equilibrium constants) of both steps of the imination reaction. By defining experiment conditions using design of experiments (DoE) methodologies, a theoretical 70+% reduction in material usage/time requirement for screening was achieved compared to the previous state-of-the-art screening using meso-OBRs in the literature. Additionally, it was discovered that thermal effects on the reaction could be inferred by changing other operating conditions such as molar ratio and residence time. This further simplifies the screening protocols by eliminating the need for active temperature control strategies (such as a jacket). IV. Finally, potential application areas for further development of the meso-OBR platform using 3D printing were devised. These areas conformed to different ā€œhierarchiesā€ of complexity, from new baffle structures (simplest) to entirely new methods for achieving mixing (most complex). This latter option was adopted as a case study, where the passively generated pulsatile flows of fluidic oscillators were tested for the first time as a means for improving plug flow. Improved plug flow behaviour was indeed demonstrated in three different standard reactor geometries (plain, baffled and coiled tubes), where it could be inferred that axial dispersion was decoupled from the secondary flows in an analogous manner to the OBR. The results indicate that these devices could be the basis for a new flow chemistry platform that requires no moving parts, which would be appealing for various industrial applications. It is concluded that, for the meso-OBR platform to remain relevant in the next era of tailor-made reactors (with rapid uptake of 3D printing), the identified areas where 3D printing could benefit the meso-OBR should be further explored

    Flow-Based Optimization of Products or Devices

    Get PDF
    Flow-based optimization of products and devices is an immature field compared to the corresponding topology optimization based on solid mechanics. However, it is an essential part of component development with both internal and/or external flow. The aim of this book is two-fold: (i) to provide state-of-the-art examples of flow-based optimization and (ii) to present a review of topology optimization for fluid-based problems
    • ā€¦
    corecore