36 research outputs found

    Design and simulation of strained-Si/strained-SiGe dual channel hetero-structure MOSFETs

    Get PDF
    With a unified physics-based model linking MOSFET performance to carrier mobility and drive current, it is shown that nearly continuous carrier mobility increase has been achieved by introduction of process-induced and global-induced strain, which has been responsible for increase in device performance commensurately with scaling. Strained silicon-germanium technology is a hot research area, explored by many different research groups for present and future CMOS technology, due to its high hole mobility and easy process integration with silicon. Several heterostructure architectures for strained Si/SiGe have been shown in the literature. A dual channel heterostructure consisting of strained Si/Si1-xGex on a relaxed SiGe buffer provides a platform for fabricating MOS transistors with high drive currents, resulting from high carrier mobility and carrier velocity, due to presence of compressively strained silicon germanium layer. This works reports the design, modeling and simulation of NMOS and PMOS transistors with a tensile strained Si channel layer and compressively strained SiGe channel layer for a 65 nm logic technology node. Since most of the recent work on development of strained Si/SiGe has been experimental in nature, developments of compact models are necessary to predict the device behavior. A unified modeling approach consisting of different physics-based models has been formulated in this work and their ability to predict the device behavior has been investigated. In addition to this, quantum mechanical simulations were performed in order to investigate and model the device behavior. High p/n-channel drive currents of 0.43 and 0.98 mA/Gm, respectively, are reported in this work. However with improved performance, ~ 10% electrostatic degradation was observed in PMOS due to buried channel device

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Study on high mobility channel transistors for future sub-10 nm CMOS technology

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ランダム・テレグラフ・ノイズの微細MOSFETへの影響に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Etude des transistors MOSFET à barrière Schottky, à canal Silicium et Germanium sur couches minces

    Get PDF
    Until the early 2000’s Dennard’s scaling rules at the transistor level have enabled to achieve a performance gain while still preserving the basic structure of the MOSFET building block from one generation to the next. However, this conservative approach has already reached its limits as shown by the introduction of channel stressors for the sub-130 nm technological nodes, and later high-k/metal gate stacks for the sub-65 nm nodes. Despite the introduction of high-k gate dielectrics, constraints in terms of gate leakage and reliability have been delaying the diminution of the equivalent oxide thickness (EOT). Concurrently, lowering the supply voltage (VDD) has become a critical necessity to reduce both the active and passive power density in integrated circuits. Hence the challenge: how to keep decreasing both gate length and supply voltage faster than the EOT without losing in terms of ON-state/OFF-state performance trade-off? Several solutions can be proposed aiming at solving this conundrum for nanoscale transistors, with architectures in rupture with the plain old Silicon-based MOSFET with doped Source and Drain invented in 1960. One approach consists in achieving an ION increase while keeping IOFF (and Vth) mostly unchanged. Specifically, two options are considered in detail in this manuscript through a review of their respective historical motivations, state-of-the-art results as well as remaining fundamental (and technological) challenges: i/ the reduction of the extrinsic parasitic resistance through the implementation of metallic Source and Drain (Schottky Barrier FET architecture); ii/ the reduction of the intrinsic channel resistance through the implementation of Germanium-based mobility boosters (Ge CMOS, compressively-strained SiGe channels, n-sSi/p-sSiGe Dual Channel co-integration). In particular, we study the case of thin films on insulator (SOI, SiGeOI, GeOI substrates), a choice justified by: the preservation of the electrostatic integrity for the targeted sub-22nm nodes; the limitation of ambipolar leakage in SBFETs; the limitation of junction leakage in (low-bandgap) Ge-based FETs. Finally, we show why, and under which conditions the association of the SBFET architecture with a Ge-based channel could be potentially advantageous with respect to conventional Si CMOS.Jusqu’au début des années 2000, les règles de scaling de Dennard ont permis de réaliser des gains en performance tout en conservant la structure de la brique de base transistor d’une génération technologique à la suivante. Cependant, cette approche conservatrice a d’ores et déjà atteint ses limites, comme en témoigne l’introduction de la contrainte mécanique pour les générations sub-130nm, et les empilements de grille métal/high-k pour les nœuds sub-65nm. Malgré l’introduction de diélectriques à forte permittivité, des limites en termes de courants de fuite de grille et de fiabilité ont ralenti la diminution de l’épaisseur équivalente d’oxyde (EOT). De façon concommitante, la diminution de la tension d’alimentation (VDD) est devenue une priorité afin de réduire la densité de puissance dissipée dans les circuits intégrés. D’où le défi actuel: comment continuer de réduire à la fois la longueur de grille et la tension d’alimentation plus rapidement que l’EOT sans pour autant dégrader le rapport de performances aux états passant et bloqué (ON et OFF) ? Diverses solutions peuvent être proposées, passant par des architectures s’éloignant du MOSFET conventionnel à canal Si avec source et drain dopés tel que défini en 1960. Une approche consiste en réaliser une augmentation du courant passant (ION) tout en laissant le courant à l’état bloqué (IOFF) et la tension de seuil (Vth) inchangés. Concrètement, deux options sont considérées en détail dans ce manuscrit à travers une revue de leurs motivations historiques respectives, les résultats de l’état de l’art ainsi que les obstacles (fondamentaux et technologiques) à leur mise en œuvre : i/ la réduction de la résistance parasite extrinsèque par l’introduction de source et drain métalliques (architecture transistor à barrière Schottky) ; ii/ la réduction de la résistance de canal intrinsèque par l’introduction de matériaux à haute mobilité à base de Germanium (CMOS Ge, canaux SiGe en contrainte compressive, co-intégration Dual Channel n-sSi/p-sSiGe). En particulier, nous étudions le cas de couches minces sur isolant (substrats SOI, SiGeOI, GeOI), un choix motivé par: la préservation de l’intégrité électrostatique pour les nœuds technologiques sub-22nm; la limitation du courant de fuite ambipolaire dans les SBFETs; la limitation du courant de fuites de jonctions dans les MOSFETs à base de Ge (qui est un matériau à faible bandgap). Enfin, nous montrons pourquoi et dans quelles conditions l’association d’une architecture SBFET et d’un canal à base de Germanium peut être avantageuse vis-à-vis du CMOS Silicium conventionnel

    Development and characterization of high-k dielectric/germanium gate stack

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Gate stack engineering of germanium mosfets with high-K dielectrics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Two dimensional quantum and reliability modelling for lightly doped nanoscale devices

    Get PDF
    The downscaling of MOSFET devices leads to well-studied short channel effects and more complex quantum mechanical effects. Both quantum and short channel effects not only alter the performance but they also affect the reliability. This continued scaling of the MOS device gate length puts a demand on the reduction of the gate oxide thickness and the substrate doping density. Quantum mechanical effects give rise to the quantization of energy in the conduction band, which consequently creates a larger effective bandgap and brings a displacement of the inversion layer charge out of the Si/SiO2 interface. Such a displacement of charge is equivalent to an increase in the effective oxide layer thickness, a growth in the threshold voltage, and a decrease in the current level. Therefore, using the classical analysis approach without including the quantum effects may lead to perceptible errors in the prognosis of the performance of modern deep submicron devices. In this work, compact Verilog-A compatible 2D models including quantum short channel effects and confinement for the potential, threshold voltage, and the carrier charge sheet density for symmetrical lightly doped double-gate MOSFETs are developed. The proposed models are not only applicable to ultra-scaled devices but they have also been derived from analytical 2D Poisson and 1D Schrodinger equations including 2D electrostatics, in order to incorporate quantum mechanical effects. Electron and hole quasi-Fermi potential effects were considered. The models were further enhanced to include negative bias temperature instability (NBTI) in order to assess the reliability of the device. NBTI effects incorporated into the models constitute interface state generation and hole-trapping. The models are continuous and have been verified by comparison with COMSOL and BALMOS numerical simulations for channel lengths down to 7nm; very good agreement within ±5% has been observed for silicon thicknesses ranging from 3nm to 20nm at 1 GHz operation after 10 years

    Strain integration and performance optimization in sub-20nm FDSOI CMOS technology

    Get PDF
    La technologie CMOS à base de Silicium complètement déserté sur isolant (FDSOI) est considérée comme une option privilégiée pour les applications à faible consommation telles que les applications mobiles ou les objets connectés. Elle doit cela à son architecture garantissant un excellent comportement électrostatique des transistors ainsi qu'à l'intégration de canaux contraints améliorant la mobilité des porteurs. Ce travail de thèse explore des solutions innovantes en FDSOI pour nœuds 20nm et en deçà, comprenant l'ingénierie de la contrainte mécanique à travers des études sur les matériaux, les dispositifs, les procédés d'intégration et les dessins des circuits. Des simulations mécaniques, caractérisations physiques (µRaman), et intégrations expérimentales de canaux contraints (sSOI, SiGe) ou de procédés générant de la contrainte (nitrure, fluage de l'oxyde enterré) nous permettent d'apporter des recommandations pour la technologie et le dessin physique des transistors en FDSOI. Dans ce travail de thèse, nous avons étudié le transport dans les dispositifs à canal court, ce qui nous a amené à proposer une méthode originale pour extraire simultanément la mobilité des porteurs et la résistance d'accès. Nous mettons ainsi en évidence la sensibilité de la résistance d'accès à la contrainte que ce soit pour des transistors FDSOI ou nanofils. Nous mettons en évidence et modélisons la relaxation de la contrainte dans le SiGe apparaissant lors de la gravure des motifs et causant des effets géométriques (LLE) dans les technologies FDSOI avancées. Nous proposons des solutions de type dessin ainsi que des solutions technologiques afin d'améliorer la performance des cellules standard digitales et de mémoire vive statique (SRAM). En particulier, nous démontrons l'efficacité d'une isolation duale pour la gestion de la contrainte et l'extension de la capacité de polarisation arrière, qui un atout majeur de la technologie FDSOI. Enfin, la technologie 3D séquentielle rend possible la polarisation arrière en régime dynamique, à travers une co-optimisation dessin/technologie (DTCO).The Ultra-Thin Body and Buried oxide Fully Depleted Silicon On Insulator (UTBB FDSOI) CMOS technology has been demonstrated to be highly efficient for low power and low leakage applications such as mobile, internet of things or wearable. This is mainly due to the excellent electrostatics in the transistor and the successful integration of strained channel as a carrier mobility booster. This work explores scaling solutions of FDSOI for sub-20nm nodes, including innovative strain engineering, relying on material, device, process integration and circuit design layout studies. Thanks to mechanical simulations, physical characterizations and experimental integration of strained channels (sSOI, SiGe) and local stressors (nitride, oxide creeping, SiGe source/drain) into FDSOI CMOS transistors, we provide guidelines for technology and physical circuit design. In this PhD, we have in-depth studied the carrier transport in short devices, leading us to propose an original method to extract simultaneously the carrier mobility and the access resistance and to clearly evidence and extract the strain sensitivity of the access resistance, not only in FDSOI but also in strained nanowire transistors. Most of all, we evidence and model the patterning-induced SiGe strain relaxation, which is responsible for electrical Local Layout Effects (LLE) in advanced FDSOI transistors. Taking into account these geometrical effects observed at the nano-scale, we propose design and technology solutions to enhance Static Random Access Memory (SRAM) and digital standard cells performance and especially an original dual active isolation integration. Such a solution is not only stress-friendly but can also extend the powerful back-bias capability, which is a key differentiating feature of FDSOI. Eventually the 3D monolithic integration can also leverage planar Fully-Depleted devices by enabling dynamic back-bias owing to a Design/Technology Co-Optimization

    DEFECTS AND LIFETIME PREDICTION OF GERMANIUM MOSFETS

    Get PDF
    To continue improving device speed, much effort has been made to replace Si by high mobility semiconductors. Ge is considered as a strong candidate for pMOSFETs due to the high hole mobility. Two approaches have been demonstrated: high-k/Si-cap/Ge and high-k/GeO2/Ge. Negative Bias Temperature Instability (NBTI) is still one of the main reliability issues, limiting the device lifetime. In this project, it is found that the conventional lifetime prediction method developed for Si is inapplicable to Ge devicesand defect properties in Ge and Si MOSFETs are different.The threshold voltage degradation in Ge can be nearly 100% recovered under a much lower temperature than that in Si devices. The defect losses observed in Si devices were absent in Ge/GeO2/Al2O3. The generation of interface states is insignificant and the positive charges in GeO2/Al2O3 on Ge dominate the NBTI. These positive charges do not follow the same model as those in SiON/Si and an energy-alternating model has been proposed: there are a spread of energy levels of neutral hole traps below Ev andthey lift up after charging, and return below Ev after neutralization.The energy distribution of positive charges in the Al2O3/GeO2/Ge gate stack was studied by the Discharge-based Multi-pulse (DMP) Technique. The different stress-time dependence of defects below Ev and around Ec indicates that they originate from different defects. Quantization effect, Fermi level pinning, and discharge voltage step were considered. The defect differences in terms of the energy level were investigated by using the DMP technique and the energy alternating model is verified by the defect energy distribution.Based on the understanding of different defect behavior, a new NBTI lifetime prediction method was developed for Ge MOSFETs. Energy alternating defects were separated from as-grown hole traps (AHT), which enables to restore the power law for NBTI kinetics with a constant power exponent. The newly developed Ge method was applicable for NBTI lifetime prediction of the state-of-the-art Si-cap/Ge and GeO2/Ge MOSFETs. When compared with SiON/Si, the optimized Si-cap/Ge shows superior reliability, while GeO2/Ge is inferior and needs further optimization. Preliminary characterization was also carried out to investigate the impacts of energy levels and characteristic times of different defects on the frequency and duty factor dependence of AC NBTI degradation
    corecore