4,722 research outputs found

    A Reliable Low-area Low-power PUF-based Key Generator

    Get PDF
    This paper reports the implementation of a lowarea low-power 128-bit PUF-based key generation module which exploits a novel Two-Stage IDentification (TSID) cell showing a higher noise immunity then a standard SRAM cell. In addition, the pre-selection technique introduced in [1] is applied. This results in a stable PUF response in spite of process and environmental variations thus requiring a low cost error correction algorithm in order to generate a reliable key. The adopted PUF cell array includes 1056 cells and shows a power consumption per bit of 4:2 W at 100MHz with an area per bit of 2:4 m2. In order to evaluate reliability and unpredictability of the generated key, extensive tests have been performed both on the raw PUF data and on the final key. The raw PUF data after pre-selection show a worst case intra-chip Hamming distance below 0:7%. After a total of more than 5 109 key reconstructions, no single fail has been detected

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    PUFs based on Coupled Oscillators Static Entropy

    Get PDF
    We live in a digital era, this led to a shift from traditional industry to a society focused on information and communication technologies. The amount of shared information is exponen- tially growing every year. Protecting all this shared information is keeping everyone’s privacy, is making sure the information is authentic, is keeping everyone safe. The solution for such problems is cryptography using hardware-based, System on Chip, SoC solutions such as Random Number Generators, RNGs, and Physical Unclonable Functions, PUFs. RNGs generate random keys from random processes that occurs inside the system. PUFs generate fixed random keys using random processes that originated in the fabrication process of the chip. The objective of this work is to study and compare a static entropy source based on coupled relaxation oscillators against a state-of-the-art architecture like the static entropy source based on ring oscillators, in advanced 130nm technology. The characteristic studied were, area, power consumption, entropy, resistance to temperature, and supply voltage varia- tions. Compared to the ring oscillator implementation, the static entropy source designed showed promising results as a static entropy source, however, it revealed poor results in terms of area, power consumption, and entropy. Such results mean, the coupled relaxation oscillator may not be good at generating random numbers, however, it may be good at keeping its state when under temperature and supply voltage variations.Vivemos numa era digital, o que levou a uma mudança da indústria tradicional para uma sociedade centrada sobre as tecnologias da informação e da comunicação. A quantidade de informação partilhada está a crescer exponencialmente todos os anos. Proteger toda esta in- formação partilhada é manter a privacidade de todos, é garantir que a informação é autêntica, está a manter todos seguros. A solução para tais problemas é a criptografia com base em soluções de hardware, Sys- tem on Chip, SoC tais como Geradores de Números Aleatórios, RNGs e Funções Físicas Inclo- náveis, PUFs. Os RNGs geram chaves aleatórias a partir de processos aleatórios que ocorrem no interior do sistema. Os PUFs geram chaves aleatórias fixas utilizando processos aleatórios que se originaram no processo de fabrico do chip. O principal objetivo deste trabalho é estudar e comparar uma fonte estática de entropia baseada em osciladores de relaxação acoplados contra uma arquitetura de estado de arte como a fonte estática de entropia baseada em osci- ladores de anel, em tecnologia avançada de 130nm. As características estudadas foram, a área, o consumo energia, a entropia, e a resistência à temperatura e variações de tensão de alimen- tação. Em comparação com a implementação do oscilador do anel, a fonte estática de entropia projetada mostrou resultados promissores como fonte estática de entropia, no entanto, reve- lou maus resultados em termos de área, consumo de energia e entropia. Estes resultados sig- nificam que o oscilador de relaxação acoplado pode não ser bom a gerar números aleatórios, no entanto, pode ser bom para manter o seu estado quando sujeito a variações de temperatura e tensão de alimentação

    A secure arbiter physical unclonable functions (PUFs) for device authentication and identification

    Get PDF
    Recent fourth industrial revolution, industry4.0 results in lot of automation of industrial processes and brings intelligence in many home appliances in the form of IoT, enhances M2M / D2D communication where electronic devices play a prominent role. It is very much necessary to ensure security of those devices. To provide reliable authentication and identification of each device and to abort the counterfeiting from the unauthorized foundries Physical Unclonable Functions (PUFs) emerged as a one of the promising cryptographic hardware security solution. PUF is function, mathematically modeled by using uncontrollable/ unavoidable random variances of the fabrication process of the ICs. These variances can generate unpredictable, random responses can be used to overcome the difficulties such as storing the keys in non-volatile memories (NVMs) in the classical cryptography. A wide variety of PUF architectures such as Arbiter PUFs, Ring oscillator PUFs, SRAM PUFs proposed by authors. But due to its design complexity and low cost, Delay based Arbiter PUFs (D-PUFs) are considering to be a one of the security primitives in authentication applications such as low-cost IoT devices for secure key generation. This paper presents a review on the different types of Delay based PUF architectures proposed by the various authors, sources to exhibit the physical disorders in ICs, methods to estimate the Performance metrics and applications of PUF in different domains

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems
    • …
    corecore