2,060 research outputs found

    Analytical methods and simulation models to assess innovative operational measures and technologies for rail port terminals: the case of Valencia Principe Felipe terminal

    Get PDF
    The topic of freight transport by rail is a complex theme and, in recent years, a main issue of European policy. The legislation evolution and the White Paper 2011 have demonstrated the European intention to re-launch this sector. The challenge is to promote the intermodal transport system to the detriment of road freight transport. In this context intermodal freight terminals, play a primary role for the supply chain, they are the connection point between the various transport nodes and the nodal points where the freight are handled, stored and transferred between different modes to final customer. To achieve the purpose, it is strengthen the improvement of existing intermodal freight terminals and the development of innovative intermodal freight terminals towards higher performance (ERRAC, 2012). Many terminal performances improvements have been proposed and sometime experimented. They are normally basing on combinations of operational measures and innovative technologies (e.g. automatic horizontal and parallel storage and handling, automated gate and sensors for tracking systems data exchange) tested in various terminals, with often-contradictory results. The research work described in this paper (developed within the Capacity4Rail EU project) focusses on the assessment of effects that these innovations can have in the intermodal freight terminals combined in various alternative consistent effective scenarios. The methodological framework setup to assess these innovations is basing on a combination of analytical methods based on sequential algorithms and discrete events simulation models. The output of this assessment method are key performance indicators (KPIs) selected according to terminals typologies and related to different aspects (e.g. management, operation and organization). The present paper illustrates the application of the methodological framework, tuned on the operation of various intermodal terminals, for the validation on today operation and the assessment of possible future scenarios to the case study of the Principe Felipe sea-rail terminal in Valencia

    Optimal Planning of Container Terminal Operations

    No full text
    Due to globalization and international trade, moving goods using a mixture of transportation modes has become a norm; today, large vessels transport 95% of the international cargos. In the first part of this thesis, the emphasis is on the sea-land intermodal transport. The availability of different modes of transportation (rail/road/direct) in sea-land intermodal transport and container flows (import, export, transhipment) through the terminal are considered simultaneously within a given planning time horizon. We have also formulated this problem as an Integer Programming (IP) model and the objective is to minimise storage cost, loading and transportation cost from/to the customers. To further understand the computational complexity and performance of the model, we have randomly generated a large number of test instances for extensive experimentation of the algorithm. Since, CPLEX was unable to find the optimal solution for the large test problems; a heuristic algorithm has been devised based on the original IP model to find near „optimal‟ solutions with a relative error of less than 4%. Furthermore, we developed and implemented Lagrangian Relaxation (LR) of the IP formulation of the original problem. The bounds derived from LR were improved using sub-gradient optimisation and computational results are presented. In the second part of the thesis, we consider the combined problems of container assignment and yard crane (YC) deployment within the container terminal. A new IP formulation has been developed using a unified approach with the view to determining optimal container flows and YC requirements within a given planning time horizon. We designed a Branch and Cut (B&C) algorithm to solve the problem to optimality which was computationally evaluated. A novel heuristic approach based on the IP formulation was developed and implemented in C++. Detailed computational results are reported for both the exact and heuristic algorithms using a large number of randomly generated test problems. A practical application of the proposed model in the context of a real case-study is also presented. Finally, a simulation model of container terminal operations based on discrete-event simulation has been developed and implemented with the view of validating the above optimisation model and using it as a test bed for evaluating different operational scenarios

    A satellite navigation system to improve the management of intermodal drayage

    Get PDF
    The intermodal transport chain can become more efficient by means of a good organization of the drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the different vehicles, often with the presence of time windows. The literature shows some works on centralised drayage management, but most of them consider the problem only from a static and deterministic perspective, whereas the work we present here incorporates the knowledge of the real-time position of the vehicles, which permanently enables the planner to reassign tasks in case the problem conditions change. This exact knowledge of position of the vehicles is possible thanks to a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty

    Get PDF
    The increasing volumes of road transportation contribute to congestion on road, which leads to delays and other negative impacts on the reliability of transportation. Moreover, transportation is one of the main contributors to the growth of carbon dioxide equivalent emissions, where the impact of road transportation is significant. Therefore, governmental organizations and private commercial companies are looking for greener transportation solutions to eliminate the negative externalities of road transportation. In this paper, we present a novel solution framework to support the operational-level decisions for intermodal transportation networks using a combination of an optimization model and simulation. The simulation model includes stochastic elements in form of uncertain travel times, whereas the optimization model represents a deterministic and linear multi-commodity service network design formulation. The intermodal transportation plan can be optimized according to different objectives, including costs, time and CO2e emissions. The proposed approach is successfully implemented to real-life scenarios where differences in transportation plans for alternative objectives are presented. The solutions for transportation networks with up to 250 services and 20 orders show that the approach is capable of delivering reliable solutions and identifying possible disruptions and alternatives for adapting the unreliable transportation plans

    Intermodal terminals simulation for operation management

    Get PDF
    A freight terminal is a key node in a transportation network and the transit time of containers through this terminal represents one of the most relevant bottleneck in logistic chains. The system performance reduction and the corresponding increase of transit time is often due to the increase of the freight flow without a corresponding increase of stacking and handling capacity. For this purpose it was decided to approach the problem by a discrete event simulation model, in order to reproduce the activities carried out inside an intermodal terminal, to calculate the total transit time and to identify the bottlenecks. The transit time of a cargo unit in a terminal is the summation of times required for the development of each phase of the process (waiting time + operational time). Therefore, the first step was the identification of the main activities and the analysis of waiting and operational phases, in order to quantify the times of each phase. For modelling the software Planimate® was used. Planimate® allows the simulation of a process as a set of discrete events, in series or in parallel, through the use of hierarchical networks. In order to optimise handling operations on containers, different scenarios were simulated with various fleets of trailers and front cranes to investigate the corresponding variations of performance indicators. For the application of the model an Italian case study was chosen: the container terminal inside the harbour of Livorno (Darsena Toscana Terminal)
    • …
    corecore