27,098 research outputs found

    GTTC Future of Ground Testing Meta-Analysis of 20 Documents

    Get PDF
    National research, development, test, and evaluation ground testing capabilities in the United States are at risk. There is a lack of vision and consensus on what is and will be needed, contributing to a significant threat that ground test capabilities may not be able to meet the national security and industrial needs of the future. To support future decisions, the AIAA Ground Testing Technical Committees (GTTC) Future of Ground Test (FoGT) Working Group selected and reviewed 20 seminal documents related to the application and direction of ground testing. Each document was reviewed, with the content main points collected and organized into sections in the form of a gap analysis current state, future state, major challenges/gaps, and recommendations. This paper includes key findings and selected commentary by an editing team

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    An overview on the obsolescence of physical assets for the defence facing the challenges of industry 4.0 and the new operating environments

    Get PDF
    Libro en Open AccessThis contribution is intended to observe special features presented in physical assets for defence. Particularly, the management of defence assets has to consider not only the reliability, availability, maintainability and other factors frequently used in asset management. On the contrary, such systems should also take into account their adaptation to changing operating environments as well as their capability to changes on the technological context. This study approaches to the current real situation where, due to the diversity of conflicts in our international context, the same type of defence systems must be able to provide services under different boundary conditions in different areas of the globe. At the same time, new concepts from the Industry 4.0 provide quick changes that should be considered along the life cycle of a defence asset. As a finding or consequence, these variations in operating conditions and in technology may accelerate asset degradation by modifying its reliability, its up-to-date status and, in general terms, its end-of-life estimation, depending of course on a diversity of factors. This accelerated deterioration of the asset is often known as “obsolescence” and its implications are often evaluated (when possible), in terms of costs from different natures. The originality of this contribution is the introduction of a discussion on how a proper analysis may help to reduce errors and mistakes in the decision-making process regarding the suitability or not of repairing, replacing, or modernizing the asset or system under study. In other words, the obsolescence analysis, from a reliability and technological point of view, could be used to determine the conservation or not of a specific asset fleet, in order to understand the effects of operational and technology factors variation over the functionality and life cycle cost of physical assets for defence

    Development and implementation of preventive-maintenance practices in Nigerian industries.

    No full text
    A methodology for the development of PM using the modern approaches of FMEA, root-cause analysis, and fault-tree analysis is presented. Applying PM leads to a cost reduction in maintenance and less overall energy expenditure. Implementation of PM is preferable to the present reactive maintenance procedures (still prevalent in Nigeria

    Towards an integrated perspective on fleet asset management: engineering and governance considerations

    Get PDF
    The traditional engineering perspective on asset management concentrates on the operational performance the assets. This perspective aims at managing assets through their life-cycle, from technical specification, to acquisition, operation including maintenance, and disposal. However, the engineering perspective often takes for granted organizational-level factors. For example, a focus on performance at the asset level may lead to ignore performance measures at the business unit level. The governance perspective on asset management usually concentrates on organizational factors, and measures performance in financial terms. In doing so, the governance perspective tends to ignore the engineering considerations required for optimal asset performance. These two perspectives often take each other for granted. However experience demonstrates that an exclusive focus on one or the other may lead to sub-optimal performance. For example, the two perspectives have different time frames: engineering considers the long term asset life-cycle whereas the organizational time frame is based on a yearly financial calendar. Asset fleets provide a relevant and important context to investigate the interaction between engineering and governance views on asset management as fleets have distributed system characteristics. In this project we investigate how engineering and governance perspectives can be reconciled and integrated to enable optimal asset and organizational performance in the context of asset fleets

    E-finance-lab at the House of Finance : about us

    Get PDF
    The financial services industry is believed to be on the verge of a dramatic [r]evolution. A substantial redesign of its value chains aimed at reducing costs, providing more efficient and flexible services and enabling new products and revenue streams is imminent. But there seems to be no clear migration path nor goal which can cast light on the question where the finance industry and its various players will be and should be in a decade from now. The mission of the E-Finance Lab is the development and application of research methodologies in the financial industry that promote and assess how business strategies and structures are shared and supported by strategies and structures of information systems. Important challenges include the design of smart production infrastructures, the development and evaluation of advantageous sourcing strategies and smart selling concepts to enable new revenue streams for financial service providers in the future. Overall, our goal is to contribute methods and views to the realignment of the E-Finance value chain. ..
    • …
    corecore