3 research outputs found

    5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

    No full text
    The present book includes a set of selected extended papers from the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in methodologies and applications of modeling and simulation. New and innovative solutions are reported in this book. SIMULTECH 2015 received 102 submissions, from 36 countries, in all continents. After a double blind paper review performed by the Program Committee, 19% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of SIMULTECH 2015. Commitment to high quality standards is a major concern of SIMULTECH that will be maintained in the next editions, considering not only the stringent paper acceptance ratios but also the quality of the program committee, keynote lectures, participation level and logistics

    Context Awareness in Swarm Systems

    Full text link
    Recent swarms of Uncrewed Systems (UxS) require substantial human input to support their operation. The little 'intelligence' on these platforms limits their potential value and increases their overall cost. Artificial Intelligence (AI) solutions are needed to allow a single human to guide swarms of larger sizes. Shepherding is a bio-inspired swarm guidance approach with one or a few sheepdogs guiding a larger number of sheep. By designing AI-agents playing the role of sheepdogs, humans can guide the swarm by using these AI agents in the same manner that a farmer uses biological sheepdogs to muster sheep. A context-aware AI-sheepdog offers human operators a smarter command and control system. It overcomes the current limiting assumption in the literature of swarm homogeneity to manage heterogeneous swarms and allows the AI agents to better team with human operators. This thesis aims to demonstrate the use of an ontology-guided architecture to deliver enhanced contextual awareness for swarm control agents. The proposed architecture increases the contextual awareness of AI-sheepdogs to improve swarm guidance and control, enabling individual and collective UxS to characterise and respond to ambiguous swarm behavioural patterns. The architecture, associated methods, and algorithms advance the swarm literature by allowing improved contextual awareness to guide heterogeneous swarms. Metrics and methods are developed to identify the sources of influence in the swarm, recognise and discriminate the behavioural traits of heterogeneous influencing agents, and design AI algorithms to recognise activities and behaviours. The proposed contributions will enable the next generation of UxS with higher levels of autonomy to generate more effective Human-Swarm Teams (HSTs)
    corecore