51,590 research outputs found

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Self-Adaptive resource allocation for event monitoring with uncertainty in Sensor Networks

    Get PDF
    Event monitoring is an important application of sensor networks. Multiple parties, with different surveillance targets, can share the same network, with limited sensing resources, to monitor their events of interest simultaneously. Such a system achieves profit by allocating sensing resources to missions to collect event related information (e.g., videos, photos, electromagnetic signals). We address the problem of dynamically assigning resources to missions so as to achieve maximum profit with uncertainty in event occurrence. We consider timevarying resource demands and profits, and multiple concurrent surveillance missions. We model each mission as a sequence of monitoring attempts, each being allocated with a certain amount of resources, on a specific set of events that occurs as a Markov process. We propose a Self-Adaptive Resource Allocation algorithm (SARA) to adaptively and efficiently allocate resources according to the results of previous observations. By means of simulations we compare SARA to previous solutions and show SARA’s potential in finding higher profit in both static and dynamic scenarios

    Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    Full text link
    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.Comment: It has been submitted to IEEE International Conference on Communications (ICC
    • …
    corecore