1,057 research outputs found

    An Innovative Signature Detection System for Polymorphic and Monomorphic Internet Worms Detection and Containment

    Get PDF
    Most current anti-worm systems and intrusion-detection systems use signature-based technology instead of anomaly-based technology. Signature-based technology can only detect known attacks with identified signatures. Existing anti-worm systems cannot detect unknown Internet scanning worms automatically because these systems do not depend upon worm behaviour but upon the worm’s signature. Most detection algorithms used in current detection systems target only monomorphic worm payloads and offer no defence against polymorphic worms, which changes the payload dynamically. Anomaly detection systems can detect unknown worms but usually suffer from a high false alarm rate. Detecting unknown worms is challenging, and the worm defence must be automated because worms spread quickly and can flood the Internet in a short time. This research proposes an accurate, robust and fast technique to detect and contain Internet worms (monomorphic and polymorphic). The detection technique uses specific failure connection statuses on specific protocols such as UDP, TCP, ICMP, TCP slow scanning and stealth scanning as characteristics of the worms. Whereas the containment utilizes flags and labels of the segment header and the source and destination ports to generate the traffic signature of the worms. Experiments using eight different worms (monomorphic and polymorphic) in a testbed environment were conducted to verify the performance of the proposed technique. The experiment results showed that the proposed technique could detect stealth scanning up to 30 times faster than the technique proposed by another researcher and had no false-positive alarms for all scanning detection cases. The experiments showed the proposed technique was capable of containing the worm because of the traffic signature’s uniqueness

    Collaborative internet worm containment

    Get PDF
    Large-scale worm outbrakes that leads to distributed denial-of-dervice attacks pose a major threat to internet infrastructure security. To prevent computers from such attacks deployment of fast, scalable security overlay networks based on distributed hash tables to facilitate high-speed intrusion detection and alert-information exchange are proposed. An effective system for worm detection and cyberspace defence must have robustness, cooperation among multiple sites, responsiveness to unexpected worms and efficiency and scalability. Deployment of collaborative WormShield monitors on just 1 percent of the vulnerable edge networks can detect worm signatures roughly 10 times faster than with independent monitors.published_or_final_versio

    Towards automated distributed containment of zero-day network worms

    Get PDF
    Worms are a serious potential threat to computer network security. The high potential speed of propagation of worms and their ability to self-replicate make them highly infectious. Zero-day worms represent a particularly challenging class of such malware, with the cost of a single worm outbreak estimated to be as high as US$2.6 Billion. In this paper, we present a distributed automated worm detection and containment scheme that is based on the correlation of Domain Name System (DNS) queries and the destination IP address of outgoing TCP SYN and UDP datagrams leaving the network boundary. The proposed countermeasure scheme also utilizes cooperation between different communicating scheme members using a custom protocol, which we term Friends. The absence of a DNS lookup action prior to an outgoing TCP SYN or UDP datagram to a new destination IP addresses is used as a behavioral signature for a rate limiting mechanism while the Friends protocol spreads reports of the event to potentially vulnerable uninfected peer networks within the scheme. To our knowledge, this is the first implementation of such a scheme. We conducted empirical experiments across six class C networks by using a Slammer-like pseudo-worm to evaluate the performance of the proposed scheme. The results show a significant reduction in the worm infection, when the countermeasure scheme is invoked

    On Detection of Current and Next-Generation Botnets.

    Full text link
    Botnets are one of the most serious security threats to the Internet and its end users. A botnet consists of compromised computers that are remotely coordinated by a botmaster under a Command and Control (C&C) infrastructure. Driven by financial incentives, botmasters leverage botnets to conduct various cybercrimes such as spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks. There are three main challenges facing botnet detection. First, code obfuscation is widely employed by current botnets, so signature-based detection is insufficient. Second, the C&C infrastructure of botnets has evolved rapidly. Any detection solution targeting one botnet instance can hardly keep up with this change. Third, the proliferation of powerful smartphones presents a new platform for future botnets. Defense techniques designed for existing botnets may be outsmarted when botnets invade smartphones. Recognizing these challenges, this dissertation proposes behavior-based botnet detection solutions at three different levels---the end host, the edge network and the Internet infrastructure---from a small scale to a large scale, and investigates the next-generation botnet targeting smartphones. It (1) addresses the problem of botnet seeding by devising a per-process containment scheme for end-host systems; (2) proposes a hybrid botnet detection framework for edge networks utilizing combined host- and network-level information; (3) explores the structural properties of botnet topologies and measures network components' capabilities of large-scale botnet detection at the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet employing SMS messages as the C&C and P2P as the topology to facilitate future research on countermeasures against next-generation botnets. The dissertation makes three primary contributions. First, the detection solutions proposed utilize intrinsic and fundamental behavior of botnets and are immune to malware obfuscation and traffic encryption. Second, the solutions are general enough to identify different types of botnets, not a specific botnet instance. They can also be extended to counter next-generation botnet threats. Third, the detection solutions function at multiple levels to meet various detection needs. They each take a different perspective but are highly complementary to each other, forming an integrated botnet detection framework.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91382/1/gracez_1.pd

    On the Adaptive Real-Time Detection of Fast-Propagating Network Worms

    Get PDF
    We present two light-weight worm detection algorithms thatoffer significant advantages over fixed-threshold methods.The first algorithm, RBS (rate-based sequential hypothesis testing)aims at the large class of worms that attempts to quickly propagate, thusexhibiting abnormal levels of the rate at which hosts initiateconnections to new destinations. The foundation of RBS derives fromthe theory of sequential hypothesis testing, the use of which fordetecting randomly scanning hosts was first introduced by our previouswork with the TRW (Threshold Random Walk) scan detection algorithm. The sequential hypothesistesting methodology enables engineering the detectors to meet falsepositives and false negatives targets, rather than triggering whenfixed thresholds are crossed. In this sense, the detectors that weintroduce are truly adaptive.We then introduce RBS+TRW, an algorithm that combines fan-out rate (RBS)and probability of failure (TRW) of connections to new destinations.RBS+TRW provides a unified framework that at one end acts as a pure RBSand at the other end as pure TRW, and extends RBS's power in detectingworms that scan randomly selected IP addresses

    A new generation for intelligent anti-internet worm early system detection

    Get PDF
    Worm requires host computer with an address on the Internet and any of several vulnerabilities to create a big threat environment.We propose intelligent early system detection mechanism for detecting internet worm.The mechanism is combined of three techniques: Failure Connection Detection (FCD) which concerns with detecting the internet worm and stealthy worm in which computer infected by the worm by using Artificial Immune System; and the Traffic Signature Detection (TSD) which responsible for detecting traffic signature for the worm; and the DNA Filtering Detection (DNAFD) which converts traffic signature to DNA signature and sending it to all computer that connected with the router to create a firewall for new worms.Our proposed algorithm can detect difficult stealthy internet worm in addition to detecting unknown internet worm

    Cybersecurity Games: Mathematical Approaches for Cyber Attack and Defense Modeling

    Get PDF
    Cyber-attacks targeting individuals and enterprises have become a predominant part of the computer/information age. Such attacks are becoming more sophisticated and prevalent on a day-to-day basis. The exponential growth of cyber plays and cyber players necessitate the inauguration of new methods and research for better understanding the cyber kill chain, particularly with the rise of advanced and novel malware and the extraordinary growth in the population of Internet residents, especially connected Internet of Things (IoT) devices. Mathematical modeling could be used to represent real-world cyber-attack situations. Such models play a beneficial role when it comes to the secure design and evaluation of systems/infrastructures by providing a better understanding of the threat itself and the attacker\u27s conduct during the lifetime of a cyber attack. Therefore, the main goal of this dissertation is to construct a proper theoretical framework to be able to model and thus evaluate the defensive strategies/technologies\u27 effectiveness from a security standpoint. To this end, we first present a Markov-based general framework to model the interactions between the two famous players of (network) security games, i.e., a system defender and an attacker taking actions to reach its attack objective(s) in the game. We mainly focus on the most significant and tangible aspects of sophisticated cyber attacks: (1) the amount of time it takes for the adversary to accomplish its mission and (2) the success probabilities of fulfilling the attack objective(s) by translating attacker-defender interactions into well-defined games and providing rigorous cryptographic security guarantees for a system given both players\u27 tactics and strategies. We study various attack-defense scenarios, including Moving Target Defense (MTD) strategies, multi-stage attacks, and Advanced Persistent Threats (APT). We provide general theorems about how the probability of a successful adversary defeating a defender’s strategy is related to the amount of time (or any measure of cost) spent by the adversary in such scenarios. We also introduce the notion of learning in cybersecurity games and describe a general game of consequences meaning that each player\u27s chances of making a progressive move in the game depend on its previous actions. Finally, we walk through a malware propagation and botnet construction game in which we investigate the importance of defense systems\u27 learning rates to fight against the self-propagating class of malware such as worms and bots. We introduce a new propagation modeling and containment strategy called the learning-based model and study the containment criterion for the propagation of the malware based on theoretical and simulation analysis

    Resilience Strategies for Network Challenge Detection, Identification and Remediation

    Get PDF
    The enormous growth of the Internet and its use in everyday life make it an attractive target for malicious users. As the network becomes more complex and sophisticated it becomes more vulnerable to attack. There is a pressing need for the future internet to be resilient, manageable and secure. Our research is on distributed challenge detection and is part of the EU Resumenet Project (Resilience and Survivability for Future Networking: Framework, Mechanisms and Experimental Evaluation). It aims to make networks more resilient to a wide range of challenges including malicious attacks, misconfiguration, faults, and operational overloads. Resilience means the ability of the network to provide an acceptable level of service in the face of significant challenges; it is a superset of commonly used definitions for survivability, dependability, and fault tolerance. Our proposed resilience strategy could detect a challenge situation by identifying an occurrence and impact in real time, then initiating appropriate remedial action. Action is autonomously taken to continue operations as much as possible and to mitigate the damage, and allowing an acceptable level of service to be maintained. The contribution of our work is the ability to mitigate a challenge as early as possible and rapidly detect its root cause. Also our proposed multi-stage policy based challenge detection system identifies both the existing and unforeseen challenges. This has been studied and demonstrated with an unknown worm attack. Our multi stage approach reduces the computation complexity compared to the traditional single stage, where one particular managed object is responsible for all the functions. The approach we propose in this thesis has the flexibility, scalability, adaptability, reproducibility and extensibility needed to assist in the identification and remediation of many future network challenges
    • …
    corecore