6,979 research outputs found

    Flight testing Time and Energy Managed Operations (TEMO)

    Get PDF
    The expected growth in air traffic combined with an increased public concern for the environment, have forced legislators to rethink the current air traffic system design. The current air traffic system operates at its capacity limits and is expected to lead to increased delays if traffic levels grow even further. Both in the United States and Europe, research projects have been initiated to develop the future Air Transportation System (ATS) to address capacity, and environmental, safety and economic issues. To address the environmental issues during descent and approach, a novel Continuous Descent Operations (CDO) concept, named Time and Energy Managed Operations (TEMO), has been developed co-sponsored by the Clean Sky Joint Undertaking. It uses energy principles to reduce fuel burn, gaseous emissions and noise nuisance whilst maintaining runway capacity. Different from other CDO concepts, TEMO optimizes the descent by using energy management to achieve a continuous engine-idle descent, while satisfying time constraints on both the Initial Approach Fix (IAF) and the runway threshold. As such, TEMO uses timemetering at two control points to facilitate flow management and arrival spacing. TEMO is in line with SESAR step 2 capabilities, since it proposes 4D trajectory management and is aimed at providing significant environmental benefits in the arrival phase without negatively affecting throughput, even in high density and peak-hour operations. In particular, TEMO addresses SESAR operational improvement (OI) TS-103: Controlled Time of Arrival (CTA) through use of datalink [1]. TEMO has been validated starting from initial performance batch studies at Technology Readiness Level (TRL) 3, up to Human-in-the-Loop studies in realistic environments using a moving base flight simulator at TRL 5 ([2]-[6]). In this paper the definition, preparation, performance and analysis of a flight test experiment is described with the objective to demonstrate the ability of the TEMO algorithm to provide accurate and safe aircraft guidance toward the Initial Approach Fix (IAF), and further down to the Stabilization Point (1000 ft AGL), to demonstrate the ability of the TEMO algorithm to meet absolute time requirements at IAF and/or runway threshold and to evaluate the performance of the system under test (e.g. fuel usage).Peer ReviewedPostprint (published version

    Performance comparison between TEMO and a typical FMS in presence of CTA and wind uncertainties

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Best session (Aiport Management & Arrival/Departure operations) paper award - 35th DASC. 2016Continuous Descent Operations (CDO) with Con- trolled Times of Arrival (CTA) at one or several metering fixes could enable environmentally friendly procedures without com- promising airspace capacity. Extending the current capabilities of state-of-the-art Flight Management Systems (FMS), the Time and Energy Managed Operations (TEMO) concept is able to generate optimal descent trajectories with an improved planning and guidance strategy to meet CTA. The primary aim of this paper is to compare the performances of TEMO (in terms of fuel consumption and time error) with respect to a typical FMS, that is an FMS without re-planning mechanism during descent based on time or altitude errors. The comparison is performed through simulation, using an A320-alike simulation model and considering several scenarios in presence of CTA and wind uncertainties. Results show that TEMO is capable of guiding the aircraft along a minimum fuel trajectory still complying with a CTA, even if significant wind prediction errors are present. For a same scenario, a typical FMS without re-planning capabilities or tactical time-error nulling mechanism during the descent, would miss the CTA in most cases.Peer ReviewedAward-winningPostprint (published version

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat Politècnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    BIM and its impact upon project success outcomes from a Facilities Management perspective

    Get PDF
    The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area.The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area

    Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    Get PDF
    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept

    4D Continuous Descent Operations Supported by an Electronic Flight Bag

    Get PDF
    This paper describes a set of flight simulation experiments carried out with the DLR’s Generic Cockpit Simulator (GECO). A new concept named time and energy managed operations (TEMO), which aims to enable advanced four dimensional (4D) continuous descent operations (CDO), was evaluated after three full days of experiments with qualified pilots. The experiment focused to investigate the possibility of using a 4D-controller on a modern aircraft with unmodified or only slightly modified avionic systems. This was achieved by executing the controller in an Electronic Flight Bag (EFB) and using the pilot to “close the loop” by entering speed and other advisories into the autopilot Flight Control Unit (FCU). The outcome of the experiments include subjective (questionnaires answered by pilots) and objective (trajectory logs) data. Data analysis showed a very good acceptance (both in terms of safety and operability of the procedure) from the participating crews, only with minor suggestions to be improved in future versions of the controller and the speed advisories update rates. Good time accuracy all along the descent trajectory was also observed.Peer ReviewedPostprint (published version

    Hazard alerting and situational awareness in advanced air transport cockpits

    Get PDF
    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized

    Understanding Extended Projected Profile (EPP) Trajectory Error Using a Medium-Fidelity Aircraft Simulation

    Get PDF
    A critical component of Trajectory-Based Operations is the ability for a consistent and accurate 4-dimensional trajectory to be shared and synchronized between airborne and ground systems as well as amongst various ground automation systems. The Aeronautical Telecommunication NetworkBaseline 2 standard defines the Extended Projected Profile (EPP) trajectory that can be sent via Automatic Dependent Surveillance-Contract from an aircraft to ground automation. The EPP trajectory message contains a representation of the reference trajectory from an aircrafts Flight Management System (FMS). In this work, a set of scenarios were run in a medium-fidelity aircraft and FMS simulation to perform an initial characterization of EPP trajectory errors under a given set of conditions. The parameters investigated were the route length, route type, wind magnitude error, wind direction error, and with and without a required time-of-arrival constraint

    Organizational alternatives for flexible manufacturing systems

    Get PDF
    There is an increasing importance of different productive architectures related to worker involvement in the decision making, where is given due attention to the intuitive capabilities and the human knowledge in the optimization and flexibilization of manufacturing processes. Thus having reference point architecture of a flexible manufacturing and assembling system existent at UNINOVA-CRI, we will present some exploratory hypothesis about applicability of the concept of hybridization and its repercussions on the definition of jobs, in those organizations and in the formation of working teams.flexibility; robotics; work organization; manufacturing industry
    corecore