907 research outputs found

    High Speed Test Interface Module Using MEMS Technology

    Get PDF
    With the transient frequency of available CMOS technologies exceeding hundreds of gigahertz and the increasing complexity of Integrated Circuit (IC) designs, it is now apparent that the architecture of current testers needs to be greatly improved to keep up with the formidable challenges ahead. Test requirements for modern integrated circuits are becoming more stringent, complex and costly. These requirements include an increasing number of test channels, higher test-speeds and enhanced measurement accuracy and resolution. In a conventional test configuration, the signal path from Automatic Test Equipment (ATE) to the Device-Under-Test (DUT) includes long traces of wires. At frequencies above a few gigahertz, testing integrated circuits becomes a challenging task. The effects on transmission lines become critical requiring impedance matching to minimize signal reflection. AC resistance due to the skin effect and electromagnetic coupling caused by radiation can also become important factors affecting the test results. In the design of a Device Interface Board (DIB), the greater the physical separation of the DUT and the ATE pin electronics, the greater the distortion and signal degradation. In this work, a new Test Interface Module (TIM) based on MEMS technology is proposed to reduce the distance between the tester and device-under-test by orders of magnitude. The proposed solution increases the bandwidth of test channels and reduces the undesired effects of transmission lines on the test results. The MEMS test interface includes a fixed socket and a removable socket. The removable socket incorporates MEMS contact springs to provide temporary with the DUT pads and the fixed socket contains a bed of micro-pins to establish electrical connections with the ATE pin electronics. The MEMS based contact springs have been modified to implement a high-density wafer level test probes for Through Silicon Vias (TSVs) in three dimensional integrated circuits (3D-IC). Prototypes have been fabricated using Silicon On Insulator SOI wafer. Experimental results indicate that the proposed architectures can operate up to 50 GHz without much loss or distortion. The MEMS probes can also maintain a good elastic performance without any damage or deformation in the test phase

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Development and implementation of a deflection amplification mechanism for capacitive accelerometers

    No full text
    Micro-Electro-Mechanical-Systems (MEMS) and especially physical sensors are part of a flourishing market ranging from consumer electronics to space applications. They have seen a great evolution throughout the last decades, and there is still considerable research effort for further improving their performance. This is reflected by the plethora of commercial applications using them but also by the demand from industry for better specifications. This demand together with the needs of novel applications fuels the research for better physical sensors.Applications such as inertial, seismic, and precision tilt sensing demand very high sensitivity and low noise. Bulk micromachined capacitive inertial sensors seem to be the most viable solution as they offer a large inertial mass, high sensitivity, good noise performance, they are easy to interface with, and of low cost. The aim of this thesis is to improve the performance of bulk micromachined capacitive sensors by enhancing their sensitivity and noise floor.MEMS physical sensors, most commonly, rely on force coupling and a resulting deflection of a proof mass or membrane to produce an output proportional to a stimulus of the physical quantity to be measured. Therefore, the sensitivity to a physical quantity may be improved by increasing the resulting deflection of a sensor. The work presented in this thesis introduces an approach based on a mechanical motion amplifier with the potential to improve the performance of mechanical MEMS sensors that rely on deflection to produce an output signal.The mechanical amplifier is integrated with the suspension system of a sensor. It comprises a system of micromachined levers (microlevers) to enhance the deflection of a proof mass caused by an inertial force. The mechanism can be used in capacitive accelerometers and gyroscopes to improve their performance by increasing their output signal. As the noise contribution of the electronic read-out circuit of a MEMS sensor is, to first order, independent of the amplitude of its input signal, the overall signal-to-noise ratio (SNR) of the sensor is improved.There is a rather limited number of reports in the literature for mechanical amplification in MEMS devices, especially when applied to amplify the deflection of inertial sensors. In this study, after a literature review, mathematical and computational methods to analyse the behaviour of microlevers were considered. By using these methods the mechanical and geometrical characteristics of microlevers components were evaluated. In order to prove the concept, a system of microlevers was implemented as a mechanical amplifier in capacitive accelerometers.All the mechanical structures were simulated using Finite Element Analysis (FEA) and system level simulations. This led to first order optimised devices that were used to design appropriate masks for fabrication. Two main fabrication processes were used; a Silicon on Insulator (SOI) process and a Silicon on Glass (SoG) process. The SOI process carried out at the University of Southampton evolved from a one mask to a two mask dicing free process with a yield of over 95%, in its third generation. The SoG is a well-established process at the University of Peking that uses three masks.The sensors were evaluated using both optical and electrical means. The results from the first prototype sensor design (1HAN) revealed an amplification factor of 40 and a mechanically amplified sensitivity of 2.39V/g. The measured natural frequency of the first mode of the sensor was at 734Hz and the full-scale measurement range was up to 7g with a maximum nonlinearity of 2%. The measurements for all the prototype sensor designs were very close to the predicted values with the highest discrepancy being 22%. The results of this research show that mechanical amplification is a very promising concept that can offer increased sensitivity in inertial sensors without increasing the noise. Experimental results show that there is plenty of room for improvement and that viable solutions may be produced by using the presented approach. The applications of this scheme are not restricted only to inertial sensors but as the results show it can be used in a broader range of micromachined devices

    Gallium Nitride Integrated Microsystems for Radio Frequency Applications.

    Full text link
    The focus of this work is design, fabrication, and characterization of novel and advanced electro-acoustic devices and integrated micro/nano systems based on Gallium Nitride (GaN). Looking beyond silicon (Si), compound semiconductors, such as GaN have significantly improved the performance of the existing electronic devices, as well as enabled completely novel micro/nano systems. GaN is of particular interest in the “More than Moore” era because it combines the advantages of a wide-band gap semiconductor with strong piezoelectric properties. Popular in optoelectronics, high-power and high-frequency applications, the added piezoelectric feature, extends the research horizons of GaN to diverse scientific and multi-disciplinary fields. In this work, we have incorporated GaN micro-electro-mechanical systems (MEMS) and acoustic resonators to the GaN baseline process and used high electron mobility transistors (HEMTs) to actuate, sense and amplify the acoustic waves based on depletion, piezoelectric, thermal and piezo-resistive mechanisms and achieved resonance frequencies ranging from 100s of MHz up to 10 GHz with frequency×quality factor (f×Q) values as high as 1013. Such high-performance integrated systems can be utilized in radio frequency (RF) and microwave communication and extreme-environment applications.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135799/1/azadans_1.pd

    Diffractive micro-electronical structures in Si and Si Ge

    Get PDF

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Development of a 3-axis MEMS magnetometer based on Lorentz force

    Get PDF
    Dissertação de mestrado em Physics Engineering, (especialização em Devices, Microsystems and Nanotechnologies)Typical magnetometers found in the magnetic fields research are highly incompatible with the massive MEMS technology industry that has been the object of study in the past years. This aspect leads to the rapid increase in production costs and reliability reduction. Furthermore, most of the magnetometers that are adapted to this technology are highly complex and with little to no adaptation to outer-space research. In this work, a novel single-axis MEMS magnetometer based on the principle of the Lorentz force capable of reading fields in the X or Y direction is designed and simulated with the description of a fabrication method to be used. This magnetometer uses an innovative design for a current-carrying-bar that’s highly adaptable to a variety of scenarios with a low 100Ω current resistance in each of its paths. An amplitude-modulated method is approached through the use of a capacitive-readout system and an off-resonance frequency of operation to achieve the detection baseline of a 1aF capacitive variation at a 20nT magnetic field. This involves the use of various mechanisms to increase the quality factor and reduce the overall stiffness of the device to increase its displacement caused by the Lorentz force. The device is also to be operated at a 500Pa atmosphere to reduce the damping and, at the same time, increase the quality factor. A thermomechanical noise below 3 /√ with a frequency of operation at around 4977 Hz was deemed necessary to adapt the design to another previously designed single-axis MEMS magnetometer capable of reading fields in the Z direction. Various simulation and design tools are used to predetermine the best properties at which the magnetometer will be operated to its highest capabilities. Through these simulations, a 50Hz bandwidth magnetometer, required for spatial research, is achieved with a capacitance variation of 1.37aF at 20nT surpassing the initial requirements. A 1.77 /√ thermomechanical noise is obtained, well below the baseline that was defined for this work. A fabrication layout was developed with all lithography masks designed, and a microfabrication process flow was devised. The microfabrication process run was partially completed and it’s still ongoing.Os magnetómetros típicos encontrados na investigação de campos magnéticos são altamente incompatíveis com a enorme indústria da tecnologia MEMS que tem sido objeto de estudo nos últimos anos. Este aspeto leva ao rápido aumento dos custos de produção e à redução da fiabilidade. Para além disso a maioria dos magnetómetros adaptados a esta tecnologia são altamente complexos e com pouca ou nenhuma adaptação à investigação espacial. Neste trabalho, um novo magnetómetro MEMS de um único eixo baseado no princípio da força de Lorentz capaz de ler campos na direção X ou Y é concebido e simulado com a descrição de um método de fabrico a ser utilizado. Este magnetómetro utiliza um desenho inovador para uma barra condutora que é altamente adaptável a uma variedade de cenários com uma baixa resistência de 100Ω em cada um dos seus caminhos. Um método de modulação em amplitude é abordado através da utilização de um sistema de leitura capacitiva e uma frequência de operação com um desvio da ressonância para alcançar a linha de base de deteção de uma variação capacitiva de 1aF para um campo magnético de 20nT. Isto envolve a utilização de vários mecanismos para aumentar o fator de qualidade e reduzir a rigidez geral do dispositivo para aumentar o deslocamento causado pela força de Lorentz. O dispositivo deve também ser operado a uma atmosfera de 500Pa para reduzir o amortecimento e, ao mesmo tempo, aumentar o factor de qualidade. Um ruído termomecânico inferior a 3 /√ com uma frequência de operação de cerca de 4977 Hz foram consideradas necessárias para adaptar o desenho a outro magnetómetro MEMS de um eixo, previamente concebido, capaz de ler campos na direção Z. Várias ferramentas de simulação e desenho são utilizadas para pré-determinar as melhores propriedades em que o magnetómetro será operado até às suas capacidades mais elevadas. Através destas simulações, um magnetómetro de 50Hz de largura de banda, necessário para a investigação espacial, é alcançado com uma variação de capacidade de 1.37aF a 20nT, ultrapassando os requisitos iniciais. É obtido um ruído termomecânico de 1.77 /√, bem abaixo da linha de base que foi definida para este trabalho. Foi desenvolvido um esquema de fabricação com todas as máscaras litográficas concebidas, e foi concebido um fluxo de processo de microfabricação. A execução do processo de microfabricação foi parcialmente concluída e ainda está em curso.This work was framed in the scope of the Project (Link4S)ustainability - A new generation connectivity system for creation and integration of networks of objects for new sustainability paradigms [POCI-01- 0247-FEDER-046122 | LISBOA-01-0247-FEDER-046122], financed by the Operational Competitiveness and Internationalization Programmes COMPETE 2020 and LISBOA 2020, under the PORTUGAL 2020 Partnership Agreement, and through the European Structural and Investment Funds in the FEDER component

    Design and Simulation of an Electrostatically-Driven MEMS Micro-Mixer

    Get PDF
    Bio MEMS ( Biology Micro-electro-mechanical Systems) focus on some micro-fabricated devices including electrical and mechanical parts to study the biological system such as new polymer-based drug delivery systems for anti-cancer agents, specialized tools for minimally invasive surgery, novel cell sorting systems for high-throughput data collection, and precision measurement techniques enabled by micro-fabricated devices. Especially some micro-liquid handling devices like micro-pumps, active and passive micro-mixers that can make two or more micro-fluids mixing completely, with the chaotic advection. This kind of rapid mixing is very important in the biochemistry analysis, drug delivery and sequencing or synthesis of nucleic acids. Besides, some biological processes like cell activation, enzyme reactions and protein folding also require mixing of reactants for initiation, electrophoresis activation. Turbulence and inter-diffusion of them play crucial role in the process of mixing of different fluids. In this report, it will introduce a new kind of electromechanical active micro-mixer, which includes two inlets and one outlet under the electrostatic driven voltage. Two different fluids will enter the micro-mixer and shows different colors separately blue and red. Choosing the ANSYS for the simulation of the fluids running in the micro-mixers, we can see nearly 100% fluids that have been mixed. ANSYS is used to show the effectiveness of the micro-mixer

    Scanning micro interferometer with tunable diffraction grating for low noise parallel operation

    Get PDF
    Large area high throughput metrology plays an important role in several technologies like MEMS. In current metrology systems the parallel operation of multiple metrology probes in a tool has been hindered by their bulky sizes. This study approaches this problem by developing a metrology technique based on miniaturized scanning grating interferometers (μSGIs). Miniaturization of the interferometer is realized by novel micromachined tunable gratings fabricated using SOI substrates. These stress free flat gratings show sufficient motion (~500nm), bandwidth (~50 kHz) and low damping ratio (~0.05). Optical setups have been developed for testing the performance of μSGIs and preliminary results show 6.6 μm lateral resolution and sub-angstrom vertical resolution. To achieve high resolution and to reduce the effect of ambient vibrations, the study has developed a novel control algorithm, implemented on FPGA. It has shown significant reduction of vibration noise in 6.5 kHz bandwidth achieving 6x10-5 nmrms/√Hz noise resolution. Modifications of this control scheme enable long range displacement measurements, parallel operation and scanning samples for their dynamic profile. To analyze and simulate similar optical metrology system with active micro-components, separate tools are developed for mechanical, control and optical sub-systems. The results of these programs enable better design optimization for different applications.Ph.D.Committee Chair: Degertekin, Levent; Committee Co-Chair: Kurfess, Thomas; Committee Member: Adibi, Ali; Committee Member: Danyluk, Steven; Committee Member: Hesketh, Pete

    Energy Harvesting Using Screen Printed PZT on Silicon

    Get PDF
    corecore