237 research outputs found

    The impact of local masses and inertias on the dynamic modelling of flexible manipulators

    Get PDF
    After a brief review of the recent literature dealing with flexible multi-body modelling for control design purpose, the paper first describes three different techniques used to build up the dynamic model of SECAFLEX, a 2 d.o.f. flexible in-plane manipulator driven by geared DC motors : introduction of local fictitious springs, use of a basis of assumed Euler-Bernouilli cantilever-free modes and of 5th order polynomial modes. This last technique allows to take easily into account local masses and inertias, which appear important in real-life experiments. Transformation of the state space models obtained in a common modal basis allows a quantitative comparison of the results obtained, while Bode plots of the various interesting transfer functions relating input torques to output in-joint and tip mea-surements give rather qualitative results. A parametric study of the effect of angular configuration changes and physical parameter modifications (including the effect of rotor inertia) shows that the three techniques give similar results up to the first flexible modes of each link when concentrated masses and inertias are present. From the control point of view, “pathological” cases are exhibited : uncertainty in the phase of the non-colocated transfer functions, high dependence of the free modes in the rotor inertia value. Robustness of the control to these kinds of uncertainties appears compulsory

    Six degree of freedom manual controls study report

    Get PDF
    The feasibility of using degree of freedom manual controls in space in an on orbit environment was determined. Several six degree of freedom controls were tested in a laboratory environment, and replica controls were used to control robot arms. The selection of six degrees of freedom as a design goal was based on the fact that six degrees are sufficient to define the location and orientation of a rigid body in space

    A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control

    Get PDF
    The task priority based control is a formalism which allows to create complex control laws with nice invariance properties, i.e. lower priority tasks do not affect the execution of higher priority ones. However, the classical task priority framework (Siciliano and Slotine) lacked the ability of enabling and disabling tasks without causing discontinuities. Furthermore, tasks corresponding to inequality control objectives could not be efficiently represented within that framework. In this paper we present a novel technique to integrate both the activation and deactivation of tasks and the inequality control objectives in the priority based control. The technique, called iCAT (inequality control objectives, activations and transitions) task priority framework, exploits novel regularization methods to activate and deactivate any row of a given task in a prioritized hierarchy without incurring in practical discontinuities, while maintaining as much as possible the invariance properties of the other active tasks. Finally, as opposed to other techniques, the proposed approach has a linear cost in the number of tasks. Simulations, experimental results and a time analysis are presented to support the proposed technique

    Technology transfer of operator-in-the-loop simulation

    Get PDF
    The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design

    Singularity Avoidance for Cart-Mounted Hand-Guided Collaborative Robots: A Variational Approach

    Get PDF
    Most collaborative robots (cobots) can be taught by hand guiding: essentially, by manually jogging the robot, an operator teaches some configurations to be employed as via points. Based on those via points, Cartesian end-effector trajectories such as straight lines, circular arcs or splines are then constructed. Such methods can, in principle, be employed for cart-mounted cobots (i.e., when the jogging involves one or two linear axes, besides the cobot axes). However, in some applications, the sole imposition of via points in Cartesian space is not sufficient. On the contrary, albeit the overall system is redundant, (i) the via points must be reached at the taught joint configurations, and (ii) the undesirable singularity (and near-singularity) conditions must be avoided. The naive approach, consisting of setting the cart trajectory beforehand (for instance, by imposing a linear-in-time motion law that crosses the taught cart configurations), satisfies the first need, but does not guarantee the satisfaction of the second. Here, we propose an approach consisting of (i) a novel strategy for decoupling the planning of the cart trajectory and that of the robot joints, and (ii) a novel variational technique for computing the former in a singularity-aware fashion, ensuring the avoidance of a class of workspace singularity and near-singularity configurations

    Dynamics of Hexapods with Fixed-Length Legs

    Get PDF

    The Virtual Robotics Laboratory

    Full text link

    Manipulator system man-machine interface evaluation program

    Get PDF
    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed
    corecore