10,960 research outputs found

    An improved channel estimation approach for MIMO-OFDM systems

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.In wireless environments, signals bounce off many obstacles such as mountains, buildings, trees, etc. as they propagate between transmitters and receivers. The resultant signal at the receive antenna is, therefore, often the sum of the attenuated transmitted signal and one or more delayed versions of the transmitted signal. The received signal also suffers from intersymbol interference which degrades the quality of signal to a certain extent. However, MIMO-OFDM systems are designed to take advantage of the multi-path properties in wireless communications and are capable of improving transmission rate, range and reliability simultaneously. MIMO-OFDM attracts a good deal of research and commercial interest because of the perceived benefits, and has been adopted in many wireless standards such as IEEE 802.1 In, IEEE 802.16e. Such systems are also potential candidates for fourth-generation (4G) systems. However, practical problems still exist in implementing MIMO-OFDM, for example, in the estimation of channel state information (CS1). This thesis studies the issues of MIMO, OFDM and the relevant techniques of MIMO-OFDM, and focuses on proposing a practical, low complexity and accurate channel estimation method for such systems. In a MIMO-OFDM system, CSI is required at the receiver to perform space-time decoding or diversity combining. In many practical wireless applications, the propagation environment is both complex and time-variant, leading to CSI estimation errors and overall system performance degradation. A variety of channel estimation approaches have been proposed in the literature to address this problem. One of the most important parameters of CSI is the number of significant or dominant propagation paths, also referred to as the number of channel taps. However, in most existing estimation schemes for MIMO-OFDM, there is an assumption that the number of channel taps is known at the receiver. In reality, in order to perform space-time decoding, the receiver needs to estimate the number of channel taps from the received signal with this estimation process sometimes aided by the insertion of pilot tones into the transmitted signal. In this thesis, a pilot-assisted, conditional model-order estimation (CME) based channel estimation algorithm is presented. The approach can be utilised to detect both the number of channel resolvable paths and channel gains for MIMO-OFDM systems. The performance of the proposed algorithm is compared with the commonly used minimum description length (MDL) algorithm by mean of simulation in the context of a 2x2 MIMO-OFDM system. Results indicate that the new algorithm is superior to the MDL algorithm in channel order estimation over an unknown, noisy, multipah fading channel with limited pilot assistance. Furthermore, the proposed scheme is tested in both fixed and mobile broadband MIMO-OFDM systems based on WiMAX techniques in Matlab simulation, and its capacity is verified again for those near practical broadband MIMO- OFDM systems in the absence of prior knowledge of model parameters. Finally, with the purpose to “make the thing work in practice”, a 2x2 MIMO baseband platform is built in order to demonstrate the proposed scheme. The platform consists of two DSP based, real-time development boards called SignalWAVe, produced by Lyrtech. Given the existing hardware components, the whole platform is built based on a fixed MIMO-OFDM system according to WiMAX standard, and the results demonstrate that the proposed algorithm is a valid approach in practice

    A software definable MIMO testbed: architecture and functionality

    Get PDF
    Following the intensive theoretical studies of recently emerged MIMO technology, a variety of performance measures become important to investigate the challenges and trade-offs at various levels throughout MIMO system design process. This paper presents a review of the MIMO testbed recently set up at King’s College London. The architecture that distinguishes the testbed as a flexible and reconfigurable system is first preseneted. This includes both the hardware and software aspects, and is followed by a discussion of implementation methods and evaluation of system research capabilities

    Dynamic power allocation and scheduling for MIMO RF energy harvesting wireless sensor platforms

    Get PDF
    Radio frequency (RF) energy harvesting systems are enabling new evolution towards charging low energy wireless devices, especially wireless sensor networks (WSN). This evolution is sparked by the development of low-energy micro-controller units (MCU). This article presents a practical multiple input multiple output (MIMO) RF energy-harvesting platform for WSN. The RF energy is sourced from a dedicated access point (AP). The sensor node is equipped with multiple antennas with diverse frequency responses. Moreover, the platform allows for simultaneous information and energy transfer without sacrificing system duplexity, unlike time-switching RF harvesting systems where data is transmitted only for a portion of the total transmission duty cycle, or power-splitting systems where the power difference between the information signal (IS) and energy signal (ES) is neglected. The proposed platform addresses the gap between those two. Furthermore, system simulation and two energy scheduling methods between AP and sensor node (SN) are presented, namely, Continuous power stream (CPS) and intermittent power stream (IPS)

    LSS reference platform control

    Get PDF
    The long range objective of this task is to develop basic technology in the design, mechanization, and analysis of control systems for large flexible space structures. The focus of the FY'81 platform control effort was on the pointing control problems associated with multiple independently controlled experiment packages operating simultaneously on a single platform. Particular emphasis was placed on obtaining a quantitative comparison of controller performance with and without base motion compensation

    Spatial Multiplexing of QPSK Signals with a Single Radio: Antenna Design and Over-the-Air Experiments

    Full text link
    The paper describes the implementation and performance analysis of the first fully-operational beam-space MIMO antenna for the spatial multiplexing of two QPSK streams. The antenna is composed of a planar three-port radiator with two varactor diodes terminating the passive ports. Pattern reconfiguration is used to encode the MIMO information onto orthogonal virtual basis patterns in the far-field. A measurement campaign was conducted to compare the performance of the beam-space MIMO system with a conventional 2-by-?2 MIMO system under realistic propagation conditions. Propagation measurements were conducted for both systems and the mutual information and symbol error rates were estimated from Monte-Carlo simulations over the measured channel matrices. The results show the beam-space MIMO system and the conventional MIMO system exhibit similar finite-constellation capacity and error performance in NLOS scenarios when there is sufficient scattering in the channel. In comparison, in LOS channels, the capacity performance is observed to depend on the relative polarization of the receiving antennas.Comment: 31 pages, 23 figure
    • …
    corecore