13,528 research outputs found

    Randomized longest-queue-first scheduling for large-scale buffered systems

    Full text link
    We develop diffusion approximations for parallel-queueing systems with the randomized longest-queue-first scheduling algorithm by establishing new mean-field limit theorems as the number of buffers n→∞n\to\infty. We achieve this by allowing the number of sampled buffers d=d(n)d=d(n) to depend on the number of buffers nn, which yields an asymptotic `decoupling' of the queue length processes. We show through simulation experiments that the resulting approximation is accurate even for moderate values of nn and d(n)d(n). To our knowledge, we are the first to derive diffusion approximations for a queueing system in the large-buffer mean-field regime. Another noteworthy feature of our scaling idea is that the randomized longest-queue-first algorithm emulates the longest-queue-first algorithm, yet is computationally more attractive. The analysis of the system performance as a function of d(n)d(n) is facilitated by the multi-scale nature in our limit theorems: the various processes we study have different space scalings. This allows us to show the trade-off between performance and complexity of the randomized longest-queue-first scheduling algorithm

    Load Balancing in Large-Scale Systems with Multiple Dispatchers

    Full text link
    Load balancing algorithms play a crucial role in delivering robust application performance in data centers and cloud networks. Recently, strong interest has emerged in Join-the-Idle-Queue (JIQ) algorithms, which rely on tokens issued by idle servers in dispatching tasks and outperform power-of-dd policies. Specifically, JIQ strategies involve minimal information exchange, and yet achieve zero blocking and wait in the many-server limit. The latter property prevails in a multiple-dispatcher scenario when the loads are strictly equal among dispatchers. For various reasons it is not uncommon however for skewed load patterns to occur. We leverage product-form representations and fluid limits to establish that the blocking and wait then no longer vanish, even for arbitrarily low overall load. Remarkably, it is the least-loaded dispatcher that throttles tokens and leaves idle servers stranded, thus acting as bottleneck. Motivated by the above issues, we introduce two enhancements of the ordinary JIQ scheme where tokens are either distributed non-uniformly or occasionally exchanged among the various dispatchers. We prove that these extensions can achieve zero blocking and wait in the many-server limit, for any subcritical overall load and arbitrarily skewed load profiles. Extensive simulation experiments demonstrate that the asymptotic results are highly accurate, even for moderately sized systems

    Coupled queues with customer impatience

    Get PDF
    Motivated by assembly processes, we consider a Markovian queueing system with multiple coupled queues and customer impatience. Coupling means that departures from all constituent queues are synchronised and that service is interrupted whenever any of the queues is empty and only resumes when all queues are non-empty again. Even under Markovian assumptions, the state space grows exponentially with the number of queues involved. To cope with this inherent state space explosion problem, we investigate performance by means of two numerical approximation techniques based on series expansions, as well as by deriving the fluid limit. In addition, we provide closed-form expressions for the first terms in the series expansion of the mean queue content for the symmetric coupled queueing system. By an extensive set of numerical experiments, we show that the approximation methods complement each other, each one being accurate in a particular subset of the parameter space. (C) 2017 Elsevier B.V. All rights reserved

    Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

    Full text link
    Multiclass open queueing networks find wide applications in communication, computer and fabrication networks. Often one is interested in steady-state performance measures associated with these networks. Conceptually, under mild conditions, a regenerative structure exists in multiclass networks, making them amenable to regenerative simulation for estimating the steady-state performance measures. However, typically, identification of a regenerative structure in these networks is difficult. A well known exception is when all the interarrival times are exponentially distributed, where the instants corresponding to customer arrivals to an empty network constitute a regenerative structure. In this paper, we consider networks where the interarrival times are generally distributed but have exponential or heavier tails. We show that these distributions can be decomposed into a mixture of sums of independent random variables such that at least one of the components is exponentially distributed. This allows an easily implementable embedded regenerative structure in the Markov process. We show that under mild conditions on the network primitives, the regenerative mean and standard deviation estimators are consistent and satisfy a joint central limit theorem useful for constructing asymptotically valid confidence intervals. We also show that amongst all such interarrival time decompositions, the one with the largest mean exponential component minimizes the asymptotic variance of the standard deviation estimator.Comment: A preliminary version of this paper will appear in Proceedings of Winter Simulation Conference, Washington, DC, 201
    • …
    corecore