16,202 research outputs found

    Action plan for deriving dynamic RES-E policies

    Get PDF
    The core objective of this project is to facilitate a continuous and significant increase in the share of RESE with minimal costs to European citizen. To identify the most important strategies (e.g. Tradable Green Certificates, Feed-In Tariffs, Investment Subsidies, Emissions Trading, CO2-taxes) in a dynamic way the computer-based toolbox Green-X has been developed. Although within the scope of this project it has not been feasible to investigate all possible issues within this field, the cases analysed cover not only the needs and opportunities at the level of the national Member States, but also those at the level ofthe EU. However, the most important ones have been treated thoroughly. This report, which is the final outcome from the Green-X project (Contract No: ENG2-CT-2002- 00607), with funding from the European Commission, DG Research, provides recommendations on the way forward for the promotion of renewable energy for electricity generation in the EU. It is addressed primarily to energy policy maker, as well as to other people interested in renewable energy and energy policy

    Carbon Free Boston: Buildings Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Transportation Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical Report; Available at http://sites.bu.edu/cfb/OVERVIEW: Boston is known for its historic iconic buildings, from the Paul Revere House in the North End, to City Hall in Government Center, to the Old South Meeting House in Downtown Crossing, to the African Meeting House on Beacon Hill, to 200 Clarendon (the Hancock Tower) in Back Bay, to Abbotsford in Roxbury. In total, there are over 86,000 buildings that comprise more than 647 million square feet of area. Most of these buildings will still be in use in 2050. Floorspace (square footage) is almost evenly split between residential and non-residential uses, but residential buildings account for nearly 80,000 (93 percent) of the 86,000 buildings. Boston’s buildings are used for a diverse range of activities that include homes, offices, hospitals, factories, laboratories, schools, public service, retail, hotels, restaurants, and convention space. Building type strongly influences energy use; for example, restaurants, hospitals, and laboratories have high energy demands compared to other commercial uses. Boston’s building stock is characterized by thousands of turn-of-the-20th century homes and a postWorld War II building boom that expanded both residential buildings and commercial space. Boston is in the midst of another boom in building construction that is transforming neighborhoods across the city. [TRUNCATED]Published versio

    The role of energy efficiency in reducing Scottish and UK CO2 emissions

    Get PDF
    In 2003, the UK government launched its long-anticipated White Paper on energy, the centrepieces of which were ambitious targets for the production of electricity from renewable technologies and the long-term aspiration of a 60% reduction in UK greenhouse gas emissions by 2050. In the White Paper it was recognised that such a dramatic reduction in emissions will require significant changes in the way in which energy is produced and used. However there has been a general failure to recognise the fact that in order to meet emissions targets, the UK will have to significantly reduce its energy consumption; this is not helped by the general misconception in the UK that reductions in CO2 emissions will occur simply by increasing the production of electricity from renewable sources. Specifically, this paper highlights the current trends in renewables deployment and energy demand, with a specific focus on Scotland, where the authorities have set more ambitious renewables targets than the rest of the UK. As will be demonstrated in this paper, without energy demand reduction, the deployment of renewables alone will not be sufficient to curtail growth in UK CO2 emissions. This is illustrated using a case study of the Scottish housing sector; whilst this case study is necessarily local in scope, the results have global relevance. The paper will also address the magnitude of energy savings required to bring about a reduction in emissions and assesses the status of the policies and technologies that could help bring such reductions about

    Environmental and Technology Policies for Climate Mitigation

    Get PDF
    We assess different policies for reducing carbon dioxide emissions and promoting the innovation and diffusion of renewable energy. We evaluate the relative performance of policies according to incentives provided for emissions reduction, efficiency, and other outcomes. We also assess how the nature of technological progress through learning and R&D, and the degree of knowledge spillovers, affect the desirability of different policies. Due to knowledge spillovers, optimal policy involves a portfolio of different instruments targeted at emissions, learning, and R&D. Although the relative cost of individual policies in achieving reductions depends on parameter values and the emissions target, in a numerical application to the U.S. electricity sector, the ranking is roughly as follows: (1) emissions price, (2) emissions performance standard, (3) fossil power tax, (4) renewables share requirement, (5) renewables subsidy, and (6) R&D subsidy. Nonetheless, an optimal portfolio of policies achieves emissions reductions at significantly lower cost than any single policy.environment, technology, externality, policy, climate change, renewable energy

    Policy additionality for UK emissions trading projects: a report for the Department of Trade & Industry

    Get PDF
    No description supplie

    Market and Economic Modelling of the Intelligent Grid: 1st Interim Report 2009

    Get PDF
    The overall goal of Project 2 has been to provide a comprehensive understanding of the impacts of distributed energy (DG) on the Australian Electricity System. The research team at the UQ Energy Economics and Management Group (EEMG) has constructed a variety of sophisticated models to analyse the various impacts of significant increases in DG. These models stress that the spatial configuration of the grid really matters - this has tended to be neglected in economic discussions of the costs of DG relative to conventional, centralized power generation. The modelling also makes it clear that efficient storage systems will often be critical in solving transient stability problems on the grid as we move to the greater provision of renewable DG. We show that DG can help to defer of transmission investments in certain conditions. The existing grid structure was constructed with different priorities in mind and we show that its replacement can come at a prohibitive cost unless the capability of the local grid to accommodate DG is assessed very carefully.Distributed Generation. Energy Economics, Electricity Markets, Renewable Energy

    Liberalisation of European energy markets: challenges and policy options

    Get PDF
    The European electricity and gas markets have been going through a process of liberalisation since the early 1990s. This process has changed the sector from a regulated structure of, predominantly, publicly owned monopolists controlling the entire supply chain, into a market where private and public generators and retailers compete on a regulated and unbundled system of transport infrastructure. This report assesses the evidence of the effects of liberalisation on efficiency, security of energy supply and environmental sustainability.
    • 

    corecore